
Adaptive Forward-Backward Greedy Algorithm for
Sparse Learning with Linear Models

Tong Zhang
Statistics Department

Rutgers University, NJ
tzhang@stat.rutgers.edu

Abstract

Consider linear prediction models where the target function is a sparse linear com-
bination of a set of basis functions. We are interested in the problem of identifying
those basis functions with non-zero coefficients and reconstructing the target func-
tion from noisy observations. Two heuristics that are widely used in practice are
forward and backward greedy algorithms. First, we show that neither idea is ad-
equate. Second, we propose a novel combination that is based on the forward
greedy algorithm but takes backward steps adaptively whenever beneficial. We
prove strong theoretical results showing that this procedure is effective in learning
sparse representations. Experimental results support our theory.

1 Introduction

Consider a set of input vectors x1, . . . ,xn ∈ Rd, with corresponding desired output variables
y1, . . . , yn. The task of supervised learning is to estimate the functional relationship y ≈ f(x)
between the input x and the output variable y from the training examples {(x1, y1), . . . , (xn, yn)}.
The quality of prediction is often measured through a loss function φ(f(x), y). In this paper, we
consider linear prediction model f(x) = wT x. As in boosting or kernel methods, nonlinearity can
be introduced by including nonlinear features in x.

We are interested in the scenario that d � n. That is, there are many more features than the number
of samples. In this case, an unconstrained empirical risk minimization is inadequate because the
solution overfits the data. The standard remedy for this problem is to impose a constraint on w to
obtain a regularized problem. An important target constraint is sparsity, which corresponds to the
(non-convex) L0 regularization, where we define ‖w‖0 = |{j : wj 6= 0}| = k. If we know the
sparsity parameter k, a good learning method is L0 regularization:

ŵ = arg min
w∈Rd

1
n

n∑
i=1

φ(wT xi, yi) subject to ‖w‖0 ≤ k. (1)

If k is not known, then one may regard k as a tuning parameter, which can be selected through cross-
validation. This method is often referred to as subset selection in the literature. Sparse learning is an
essential topic in machine learning, which has attracted considerable interests recently. Generally
speaking, one is interested in two closely related themes: feature selection, or identifying the basis
functions with non-zero coefficients; estimation accuracy, or reconstructing the target function from
noisy observations. It can be shown that the solution of the L0 regularization problem in (1) achieves
good prediction accuracy if the target function can be approximated by a sparse w̄. It can also
solve the feature selection problem under extra identifiability assumptions. However, a fundamental
difficulty with this method is the computational cost, because the number of subsets of {1, . . . , d}
of cardinality k (corresponding to the nonzero components of w) is exponential in k. There are no
efficient algorithms to solve the subset selection formulation (1).

1

Due to the computational difficult, in practice, there are three standard methods for learning sparse
representations by solving approximations of (1). The first approach is L1-regularization (Lasso).
The idea is to replace the L0 regularization in (1) by L1 regularization. It is the closest convex
approximation to (1). It is known that L1 regularization often leads to sparse solutions. Its perfor-
mance has been theoretically analyzed recently. For example, if the target is truly sparse, then it
was shown in [10] that under some restrictive conditions referred to as irrepresentable conditions,
L1 regularization solves the feature selection problem. The prediction performance of this method
has been considered in [6, 2, 1, 9]. Despite its popularity, there are several problems with L1 regu-
larization: first, the sparsity is not explicitly controlled, and good feature selection property requires
strong assumptions; second, in order to obtain very sparse solution, one has to use a large regulariza-
tion parameter that leads to suboptimal prediction accuracy because the L1 penalty not only shrinks
irrelevant features to zero, but also shrinks relevant features to zero. A sub-optimal remedy is to
threshold the resulting coefficients; however this requires additional tuning parameters, making the
resulting procedures more complex and less robust. The second approach to approximately solve
the subset selection problem is forward greedy algorithm, which we will describe in details in Sec-
tion 2. The method has been widely used by practitioners. The third approach is backward greedy
algorithm. Although this method is widely used by practitioners, there isn’t any theoretical analysis
when n � d (which is the case we are interested in here). The reason will be discussed later.

In this paper, we are particularly interested in greedy algorithms because they have been widely
used but the effectiveness has not been well analyzed. As we shall explain later, neither the standard
forward greedy idea nor th standard backward greedy idea is adequate for our purpose. However,
the flaws of these methods can be fixed by a simple combination of the two ideas. This leads to a
novel adaptive forward-backward greedy algorithm which we present in Section 3. The general idea
works for all loss functions. For least squares loss, we obtain strong theoretical results showing that
the method can solve the feature selection problem under moderate conditions.

For clarity, this paper only considers the fixed design formulation. To simplify notations in our
description, we will replace the optimization problem in (1) with a more general formulation. In-
stead of working with n input data vectors xi ∈ Rd, we work with d feature vectors fj ∈ Rn

(j = 1, . . . , d), and y ∈ Rn. Each fj corresponds to the j-th feature component of xi for
i = 1, . . . , n. That is, fj,i = xi,j . Using this notation, we can generally rewrite (1) with in the
form ŵ = arg minw∈Rd R(w) subject to ‖w‖0 ≤ k, where weight w = [w1, . . . ,wd] ∈ Rd,
and R(w) is a real-valued cost function which we are interested in optimization. For least squares
regression, we have R(w) = n−1‖

∑
j wjfj − y‖22. In the following, we also let ej ∈ Rd be the

vector of zeros, except for the j-component which is one. For convenience, we also introduce the
following notations.

Definition 1.1 Define supp(w) = {j : wj 6= 0} as the set of nonzero coefficients of a vector
w = [w1, . . . ,wd] ∈ Rd. For a weight vector w ∈ Rd, we define mapping f : Rd → Rn as:
f(w) =

∑d
j=1 wjfj . Given f ∈ Rd and F ⊂ {1, . . . , d}, let ŵ(F, f) = minw∈Rd ‖f(w) −

f‖22 subject to supp(w) ⊂ F , and let ŵ(F) = ŵ(F,y) be the solution of the least squares
problem using features F .

2 Forward and Backward Greedy Algorithms

Forward greedy algorithms have been widely used in applications. The basic algorithm is presented
in Figure 1. Although a number of variations exist, they all share the basic form of greedily picking
an additional feature at every step to aggressively reduce the cost function. The intention is to make
most significant progress at each step in order to achieve sparsity. In this regard, the method can be
considered as an approximation algorithm for solving (1).

A major flaw of this method is that it can never correct mistakes made in earlier steps. As an
illustration, we consider the situation plotted in Figure 2 with least squares regression. In the figure,
y can be expressed as a linear combination of f1 and f2 but f3 is closer to y. Therefore using the
forward greedy algorithm, we will find f3 first, then f1 and f2. At this point, we have already found
all good features as y can be expressed by f1 and f2, but we are not able to remove f3 selected
in the first step. The above argument implies that forward greedy method is inadequate for feature
selection. The method only works when small subsets of the basis functions {fj} are near orthogonal

2

Input: f1, . . . , fd,y ∈ Rn and ε > 0
Output: F (k) and w(k)

let F (0) = ∅ and w(0) = 0
for k = 1, 2, . . .

let i(k) = arg mini minα R(w(k−1) + αei)
let F (k) = {i(k)} ∪ F (k−1)

let w(k) = ŵ(F (k))
if (R(w(k−1))−R(w(k)) ≤ ε) break

end

Figure 1: Forward Greedy Algorithm

f5

y

f1

f2

f3f4

Figure 2: Failure of Forward Greedy Algorithm

[7]. In general, Figure 2 (which is the case we are interested in in this paper) shows that forward
greedy algorithm will make errors that are not corrected later on.

In order to remedy the problem, the so-called backward greedy algorithm has been widely used by
practitioners. The idea is to train a full model with all the features, and greedily remove one feature
(with the smallest increase of cost function) at a time. Although at the first sight, backward greedy
method appears to be a reasonable idea that addresses the problem of forward greedy algorithm, it is
computationally very costly because it starts with a full model with all features. Moreover, there are
no theoretical results showing that this procedure is effective. In fact, under our setting, the method
may only work when d � n (see, for example, [3]), which is not the case we are interested in. In
the case d � n, during the first step, we start with a model with all features, which can immediately
overfit the data with perfect prediction. In this case, the method has no ability to tell which feature
is irrelevant and which feature is relevant because removing any feature still completely overfits
the data. Therefore the method will completely fail when d � n, which explains why there is no
theoretical result for this method.

3 Adaptive Forward-Backward Greedy Algorithm

The main strength of forward greedy algorithm is that it always works with a sparse solution ex-
plicitly, and thus computationally efficient. Moreover, it does not significantly overfit the data due
to the explicit sparsity. However, a major problem is its inability to correct any error made by the
algorithm. On the other hand, backward greedy steps can potentially correct such an error, but need
to start with a good model that does not completely overfit the data — it can only correct errors with
a small amount of overfitting. Therefore a combination of the two can solve the fundamental flaws
of both methods. However, a key design issue is how to implement a backward greedy strategy
that is provably effective. Some heuristics exist in the literature, although without any effectiveness
proof. For example, the standard heuristics, described in [5] and implemented in SAS, includes
another threshold ε′ in addition to ε: a feature is deleted if the cost-function increase by performing
the deletion is no more than ε′. Unfortunately we cannot provide an effectiveness proof for this
heuristics: if the threshold ε′ is too small, then it cannot delete any spurious features introduced in
the forward steps; if it is too large, then one cannot make progress because good features are also
deleted. In practice it can be hard to pick a good ε′, and even the best choice may be ineffective.

3

This paper takes a more principled approach, where we specifically design a forward-backward
greedy procedure with adaptive backward steps that are carried out automatically. The procedure
has provably good performance and fixes the drawbacks of forward greedy algorithm illustrated in
Figure 2. There are two main considerations in our approach: we want to take reasonably aggressive
backward steps to remove any errors caused by earlier forward steps, and to avoid maintaining a
large number of basis functions; we want to take backward step adaptively and make sure that any
backward greedy step does not erase the gain made in the forward steps. Our algorithm, which we
refer to as FoBa, is listed in Figure 3. It is designed to balance the above two aspects. Note that we
only take a backward step when the increase of cost function is no more than half of the decrease of
cost function in earlier forward steps. This implies that if we take ` forward steps, then no matter
how many backward steps are performed, the cost function is decreased by at least an amount of
`ε/2. It follows that if R(w) ≥ 0 for all w ∈ Rd, then the algorithm terminates after no more than
2R(0)/ε steps. This means that the procedure is computationally efficient.

Input: f1, . . . , fd,y ∈ Rn and ε > 0
Output: F (k) and w(k)

let F (0) = ∅ and w(0) = 0
let k = 0
while true

let k = k + 1
// forward step
let i(k) = arg mini minα R(w(k−1) + αei)
let F (k) = {i(k)} ∪ F (k−1)

let w(k) = ŵ(F (k))
let δ(k) = R(w(k−1))−R(w(k))
if (δ(k) ≤ ε)

k = k − 1
break

endif
// backward step (can be performed after each few forward steps)
while true

let j(k) = arg minj∈F (k) R(w(k) −w(k)
j ej)

let δ′ = R(w(k) −w(k)

j(k)ej(k))−R(w(k))
if (δ′ > 0.5δ(k)) break
let k = k − 1
let F (k) = F (k+1) − {j(k+1)}
let w(k) = ŵ(F (k))

end
end

Figure 3: FoBa: Forward-Backward Greedy Algorithm

Now, consider an application of FoBa to the example in Figure 2. Again, in the first three forward
steps, we will be able to pick f3, followed by f1 and f2. After the third step, since we are able
to express y using f1 and f2 only, by removing f3 in the backward step, we do not increase the
cost. Therefore at this stage, we are able to successfully remove the incorrect basis f3 while keeping
the good features f1 and f2. This simple illustration demonstrates the effectiveness of FoBa. In
the following, we formally characterize this intuitive example, and prove the effectiveness of FoBa
for feature selection as well as parameter estimation. Our analysis assumes the least squares loss.
However, it is possible to handle more general loss functions with a more complicated derivation.

We introduce the following definition, which characterizes how linearly independent small subsets
of {fj} of size k are. For k � n, the number ρ(k) can be bounded away from zero even when
d � n. For example, for random basis functions fj , we may take ln d = O(n/k) and still have ρ(k)
to be bounded away from zero. This quantity is the smallest eigenvalue of the k×k diagonal blocks
of the d× d design matrix [fT

i fj]i,j=1,...,d, and has appeared in recent analysis of L1 regularization

4

methods such as in [2, 8], etc. We shall refer it to as the sparse eigenvalue condition. This condition
is the least restrictive condition when compared to other conditions in the literature [1].

Definition 3.1 Define for all 1 ≤ k ≤ d: ρ(k) = inf
{

1
n‖f(w)‖22/‖w‖22 : ‖w‖0 ≤ k

}
.

Assumption 3.1 Consider least squares loss R(w) = 1
n‖f(w(k)) − y‖22. Assume that the basis

functions are normalized such that 1
n‖fj‖

2
2 = 1 for all j = 1, . . . , d, and assume that {yi}i=1,...,n

are independent (but not necessarily identically distributed) sub-Gaussians: there exists σ ≥ 0 such
that ∀i and ∀t ∈ R, Eyi

et(yi−Eyi) ≤ eσ2t2/2.

Both Gaussian and bounded random variables are sub-Gaussian using the above definition. For
example, we have the following Hoeffding’s inequality. If a random variable ξ ∈ [a, b], then
Eξe

t(ξ−Eξ) ≤ e(b−a)2t2/8. If a random variable is Gaussian: ξ ∼ N(0, σ2), then Eξe
tξ ≤ eσ2t2/2.

The following theorem is stated with an explicit ε for convenience. In applications, one can always
run the algorithm with a smaller ε and use cross-validation to determine the optimal stopping point.

Theorem 3.1 Consider the FoBa algorithm in Figure 3, where Assumption 3.1 holds. Assume also
that the target is sparse: there exists w̄ ∈ Rd such that w̄T xi = Eyi for i = 1, . . . , n, and
F̄ = supp(w̄). Let k̄ = |F̄ |, and ε > 0 be the stopping criterion in Figure 3. Let s ≤ d be an
integer which either equals d or satisfies the condition 8k̄ ≤ sρ(s)2. If minj∈supp(w̄) |w̄j |2 ≥
64
25ρ(s)−2ε, and for some η ∈ (0, 1/3), ε ≥ 64ρ(s)−2σ2 ln(2d/η)/n, then with probability
larger than 1 − 3η, when the algorithm terminates, we have F (k) = F̄ and ‖w(k) − w̄‖2 ≤
σ
√

k̄/(nρ(k̄))
[
1 +

√
20 ln(1/η)

]
.

The result shows that one can identify the correct set of features F̄ as long as the weights w̄j are
not close to zero when j ∈ F̄ . This condition is necessary for all feature selection algorithms
including previous analysis of Lasso. The theorem can be applied as long as eigenvalues of small
s× s diagonal blocks of the design matrix [fT

i fj]i,j=1,...,d are bounded away from zero (i.e., sparse
eigenvalue condition). This is the situation under which the forward greedy step can make mistakes,
but such mistakes can be corrected using FoBa. Because the conditions of the theorem do not prevent
forward steps from making errors, the example described in Figure 2 indicates that it is not possible
to prove a similar result for the forward greedy algorithm. The result we proved is also better than
that of Lasso, which can successfully select features under irrepresentable conditions of [10]. It is
known that the sparse eigenvalue condition considered here is generally weaker [8, 1].

Our result relies on the assumption that |w̄j | (j ∈ F̄) is larger than the noise level O(σ
√

ln d/n) in
order to select features effectively. If any nonzero weight is below the noise level, then no algorithm
can distinguish it from zero with large probability. That is, in this case, one cannot reliably perform
feature selection due to the noise. Therefore FoBa is near optimal in term of its ability to perform
reliable feature selection, except for the constant hiding in O(·). For target that is not truly sparse,
similar results can be obtained. In this case, it is not possible to correctly identify all the features
with large probability. However, we can show that FoBa can still select part of the features reliably,
with good parameter estimation accuracy. Such results can be found in the full version of the paper,
available from the author’s website.

4 Experiments

We compare FoBa described in Section 3) to forward-greedy and L1-regularization on artificial
and real data. They show that in practice, FoBa is closer to subset selection than the other two
approaches, in the sense that FoBa achieves smaller training error given any sparsity level. In oder
to compare with Lasso, we use the LARS [4] package in R, which generates a path of actions for
adding and deleting features, along the L1 solution path. For example, a path of {1, 3, 5,−3, . . .}
means that in the fist three steps, feature 1, 3, 5 are added; and the next step removes feature 3.
Using such a solution path, we can compare Lasso to Forward-greedy and FoBa under the same
framework. Similar to the Lasso path, FoBa also generates a path with both addition and deletion
operations, while forward-greedy algorithm only adds features without deletion.

5

Our experiments compare the performance of the three algorithms using the corresponding feature
addition/deletion paths. We are interested in features selected by the three algorithms at any sparsity
level k, where k is the desired number of features presented in the final solution. Given a path, we
can keep an active feature set by adding or deleting features along the path. For example, for path
{1, 3, 5,−3}, we have two potential active feature sets of size k = 2: {1, 3} (after two steps) and
{1, 5} (after four steps). We then define the k best features as the active feature set of size k with
the smallest least squares error because this is the best approximation to subset selection (along the
path generated by the algorithm). From the above discussion, we do not have to set ε explicitly in
the FoBa procedure. Instead, we just generate a solution path which is five times as long as the
maximum desired sparsity k, and then generate the best k features for any sparsity level using the
above described procedure.

4.1 Simulation Data

Since for real data, we do not know the true feature set F̄ , simulation is needed to compare feature
selection performance. We generate n = 100 data points of dimension d = 500. The target vector
w̄ is truly sparse with k̄ = 5 nonzero coefficients generated uniformly from 0 to 10. The noise
level is σ2 = 0.1. The basis functions fj are randomly generated with moderate correlation: that
is, some basis functions are correlated to the basis functions spanning the true target. Note that
if there is no correlation (i.e., fj are independent random vectors), then both forward-greedy and
L1-regularization work well because the basis functions are near orthogonal (this is the well-known
case considered in the compressed sensing literature). Therefore in this experiment, we generate
moderate correlation so that the performance of the three methods can be differentiated. Such mod-
erate correlation does not violate the sparse eigenvalue condition in our analysis, but violates the
more restrictive conditions for forward-greedy method and Lasso.

FoBa Forward-greedy L1

least squares training error 0.093± 0.02 0.16± 0.089 0.25± 0.14
parameter estimation error 0.057± 0.2 0.52± 0.82 1.1± 1

feature selection error 0.76± 0.98 1.8± 1.1 3.2± 0.77

Table 1: Performance comparison on simulation data at sparsity level k = 5

Table 1 shows the performance of the three methods (including two versions of FoBa), where we
repeat the experiments 50 times, and report the average ± standard-deviation. We use the three
methods to select five best features, using the procedure described above. We report three metrics.
Training error is the squared error of the least squares solution with the selected five features. Pa-
rameter estimation error is the 2-norm of the estimated parameter (with the five features) minus the
true parameter. Feature selection error is the number of incorrectly selected features. It is clear
from the table that for this data, FoBa achieves significantly smaller training error than the other two
methods, which implies that it is closest to subset selection. Moreover, the parameter estimation
performance and feature selection performance are also better. The two versions of FoBa perform
very similarly for this data.

4.2 Real Data

Instead of listing results for many datasets without gaining much insights, we present a more detailed
study on a typical dataset, which reflect typical behaviors of the algorithms. Our study shows that
FoBa does what it is designed to do well: that is, it gives a better approximation to subset selection
than either forward-greedy or L1 regularization. Moreover, the difference between aggressive FoBa
and conservative FoBa become more significant.

In this study, we use the standard Boston Housing data, which is the housing data for 506 cen-
sus tracts of Boston from the 1970 census, available from the UCI Machine Learning Database
Repository: http://archive.ics.uci.edu/ml/. Each census tract is a data-point, with 13 features (we
add a constant offset one as the 14th feature), and the desired output is the housing price. In the
experiment, we randomly partition the data into 50 training plus 456 test points. We perform the
experiments 50 times, and for each sparsity level from 1 to 10, we report the average training and test
squared error. The results are plotted in Figure 4. From the results, we can see that FoBa achieves

6

better training error for any given sparsity, which is consistent with the theory and the design goal of
FoBa. Moreover, it achieves better test accuracy with small sparsity level (corresponding to a more
sparse solution). With large sparsity level (corresponding to a less sparse solution), the test error
increase more quickly with FoBa. This is because it searches a larger space by more aggressively
mimic subset selection, which makes it more prone to overfitting. However, at the best sparsity level
of 2 or 3 (for aggressive and conservative FoBa, respectively), FoBa achieves significantly better test
error. Moreover, we can observe with small sparsity level (a more sparse solution), L1 regularization
performs poorly, due to the bias caused by using a large L1-penalty.

●

●

●

●

●

●

●

●

●
●

2 4 6 8 10

20
30

40
50

60

sparsity

tr
ai

ni
ng

 e
rr

or

● FoBa
forward−greedy
L1

●

●

● ● ●

●

●

● ● ●

2 4 6 8 10

35
40

45
50

55
60

65
70

sparsity

te
st

 e
rr

or

● FoBa
forward−greedy
L1

Figure 4: Performance of the algorithms on Boston Housing data Left: average training squared
error versus sparsity; Right: average test squared error versus sparsity

For completeness, we also compare FoBa to the backward-greedy algorithm and the classical heuris-
tic forward-backward greedy algorithm as implemented in SAS (see its description at the beginning
of Section 3). We still use the Boston Housing data, but plot the results separately, in order to avoid
cluttering. As we have pointed out, there is no theory for the SAS version of forward-backward
greedy algorithm. It is difficult to select an appropriate backward threshold ε′: a too small value
leads to few backward steps, and a too large value leads to overly aggressive deletion, and the pro-
cedure terminates very early. In this experiment, we pick a value of 10, because it is a reasonably
large quantity that does not lead to an extremely quick termination of the procedure. The perfor-
mance of the algorithms are reported in Figure 5. From the results, we can see that backward greedy
algorithm performs reasonably well on this problem. Note that for this data, d � n, which is the
scenario that backward does not start with a completely overfitted full model. Still, it is inferior to
FoBa at small sparsity level, which means that some degree of overfitting still occurs. Note that
backward-greedy algorithm cannot be applied in our simulation data experiment, because d � n
which causes immediate overfitting. From the graph, we also see that FoBa is more effective than
the SAS implementation of forward-backward greedy algorithm. The latter does not perform signif-
icant better than the forward-greedy algorithm with our choice of ε′. Unfortunately, using a larger
backward threshold ε′ will lead to an undesirable early termination of the algorithm. This is why the
provably effective adaptive backward strategies introduced in this paper are superior.

5 Discussion

This paper investigates the problem of learning sparse representations using greedy algorithms. We
showed that neither forward greedy nor backward greedy algorithms are adequate by themselves.
However, through a novel combination of the two ideas, we showed that an adaptive forward-back
greedy algorithm, referred to as FoBa, can effectively solve the problem under reasonable condi-
tions. FoBa is designed to be a better approximation to subset selection. Under the sparse eigenvalue
condition, we obtained strong performance bounds for FoBa for feature selection and parameter es-
timation. In fact, to the author’s knowledge, in terms of sparsity, the bounds developed for FoBa in
this paper are superior to all earlier results in the literature for other methods.

7

●

●

●

●

●

●

●

●

●

●

2 4 6 8 10

20
30

40
50

sparsity

tr
ai

ni
ng

 e
rr

or

●

●

●

●

●

●

●
●

●
●

●

●

FoBa
Forward−Backward (SAS)
forward−greedy
backward−greedy

●

●

● ● ●

●

●

● ● ●

2 4 6 8 10

40
50

60
70

sparsity

te
st

 e
rr

or

●

●

●

●
●

●

●

●
●

●

●

●

FoBa
Forward−Backward (SAS)
forward−greedy
backward−greedy

Figure 5: Performance of greedy algorithms on Boston Housing data. Left: average training squared
error versus sparsity; Right: average test squared error versus sparsity

Our experiments also showed that FoBa achieves its design goal: that is, it gives smaller training
error than either forward-greedy or L1 regularization for any given level of sparsity. Therefore the
experiments are consistent with our theory. In real data, better sparsity helps on some data such
as Boston Housing. However, we shall point out that while FoBa always achieves better training
error for a given sparsity in our experiments on other datasets (thus it achieves our design goal), L1-
regularization some times achieves better test performance. This is not surprising because sparsity is
not always the best complexity measure for all problems. In particular, the prior knowledge of using
small weights, which is encoded in the L1 regularization formulation but not in greedy algorithms,
can lead to better generalization performance on some data (when such a prior is appropriate).

References

[1] Peter Bickel, Yaacov Ritov, and Alexandre Tsybakov. Simultaneous analysis of Lasso and
Dantzig selector. Annals of Statistics, 2008. to appear.

[2] Florentina Bunea, Alexandre Tsybakov, and Marten H. Wegkamp. Sparsity oracle inequalities
for the Lasso. Electronic Journal of Statistics, 1:169–194, 2007.

[3] Christophe Couvreur and Yoram Bresler. On the optimality of the backward greedy algorithm
for the subset selection problem. SIAM J. Matrix Anal. Appl., 21(3):797–808, 2000.

[4] Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression.
Annals of Statistics, 32(2):407–499, 2004.

[5] T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning. Springer,
2001.

[6] Vladimir Koltchinskii. Sparsity in penalized empirical risk minimization. Annales de l’Institut
Henri Poincaré, 2008.

[7] Joel A. Tropp. Greed is good: Algorithmic results for sparse approximation. IEEE Trans. Info.
Theory, 50(10):2231–2242, 2004.

[8] Cun-Hui Zhang and Jian Huang. Model-selection consistency of the Lasso in high-dimensional
linear regression. Technical report, Rutgers University, 2006.

[9] Tong Zhang. Some sharp performance bounds for least squares regression with L1 regulariza-
tion. The Annals of Statistics, 2009. to appear.

[10] Peng Zhao and Bin Yu. On model selection consistency of Lasso. Journal of Machine Learning
Research, 7:2541–2567, 2006.

8

