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A Properties of the Unnormalized KL-divergence Prior

Many of the important properties of a regularization function can be understood by looking at the
behavior of its partial derivatives, since at ŵ the (sub)gradient of the regularization function cancels
the gradient of the loss (1). In the case where B is the identity matrix and DL(x‖f(Bw)) =
1
2‖x−Bw‖

2
2, each ŵi can be computed independently as ŵi = xi −∇iDP (ŵ‖p). Figure 1A plots

ŵi against xi for various priors. The uniform prior has no effect and produces the line ŵi = xi. An
L2 (gaussian) prior changes the slope of the line to ŵi = (1−λ)xi, but does not change the sparsity
of ŵ, as all elements are scaled equally. An L1 prior however, does change the sparsity because its
gradient is discontinuous at zero which forces ŵi = 0 while |xi| ≤ λ.

∇DP (ŵ‖p) = − 1
λ
∇DL (x‖f(Bŵ)) (1)
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Figure 1: For the identity basis, the gradient of the log prior on ŵ (B) determines an offset between ŵi and xi

(A). The probability density functions obtained by exponentiating the L1, L2, and KL regularization functions
are shown in (C). Note that KL regularization is shown on an expanded basis set that adds the negation of each
basis vector to allow negative weights.

KL-divergence regularization does not allow negative weights, but expanding the basis by adding the
negation of each basis vector B̃ = [−B B] simulates the effects of negative weights with only pos-
itive ones. In this case the derivative of the KL-divergence prior corresponds to the arcsinh (wi/pi)
function pictured in Figure 1B (proof given in Appendix B). arcsinh grows quickly for small
weights, which causes sparsity similar to L1. Crucially though, it grows slowly for large weights
while still reaching ∞. This property causes ŵ to be differentiable and stable to small changes in
B and x, because it allows ŵ to contain large weights while still ensuring that similar columns of
B will have similar activations in ŵ. If B is not orthogonal, L1 allows ŵ to be discontinuous1 with
respect to X and B because its derivative is flat apart from w = 0.

1For an extreme, but illustrative, example consider the case where B contains two identical basis vectors.
Then there is no longer even a unique ŵ.
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B Relationship between KL-divergence and arcsinh

The MAP estimate w̃ obtained for KL regularization on the basis B̃ = [−B B] is related through
the function ŵ = ŵ+ − ŵ− to the MAP estimate ŵ produced by using the regularization function∑

i wiarcsinh
(

wi
2pi

)
−
√
w2

i + 4p2
i (shown in figure A) on the basis B.

Define B̃ = [−B B], and compute the MAP estimate w̃ by minimizing (2).

w̃ = arg min
w

DL

(
x‖f(B̃w)

)
+ λKL(w̃‖p) (2)

At the minimum w̃, the gradients of both terms in (2) cancel each other (3).

− 1
λ

∂

∂w̃
DL

(
x‖f(B̃w̃)

)
=

∂

∂w̃
KL(w̃‖p) (3)

Divide the elements of w̃ into two groups w̃ =
[
ŵ−

ŵ+

]
, so that B̃w̃ = B(ŵ+− ŵ−) = Bŵ, where

ŵ is defined to be ŵ = ŵ+ − ŵ−. Notice that ∂( eB ew)
∂ ew =

[
−∂Bŵ

∂w
∂Bŵ
∂w

]
. Substituting Bŵ into (3)

produces (4).

− 1
λ

[
− ∂

∂ŵDL (x‖f(Bŵ))
∂

∂ŵDL (x‖f(Bŵ))

]
=

[
log w−

p

log w+

p

]
(4)

Solve (4) for ŵ+
i and ŵ−i (5).

ŵ+ = pe−
1
λ
∂
∂ŵDL(x‖f(Bŵ))

ŵ− = pe
1
λ
∂
∂ŵDL(x‖f(Bŵ)) (5)

Now rewrite ŵ = ŵ+− ŵ− using (5) and the hyperbolic sin function sinh(x) = 1/2(ex− e−x) (6).

ŵ = pe−
1
λ
∂
∂ŵDL(x‖f(Bŵ)) − pe 1

λ
∂
∂ŵDL(x‖f(Bŵ))

= 2p sinh
(
− 1
λ

∂

∂ŵ
DL (x‖f(Bŵ))

)
(6)

Rearranging (6) produces (7), which is the derivative of (8) at its MAP estimate. Hence ŵ computed
by KL-regularization is also the MAP estimate of (8).

− 1
λ

∂

∂ŵ
DL (x‖f(Bŵ)) = arcsinh

(
ŵ

2p

)
(7)

ŵ = arg min
w

DL (x‖f(Bw)) + λ
∑

i

wiarcsinh
(
wi

2pi

)
−
√
w2

i + 4p2
i (8)

C Derivation of ∂ŵ
∂B

The KL-divergence prior we use does not have a closed-form solution for the MAP estimate of the
coefficients, ŵ. However, the partial derivative ∂ŵ

∂B can still be computed using implicit differentia-
tion because the gradient of the reconstruction loss equals the negative gradient of the regularization
at ŵ (1). This section derives ∂ŵ

∂B for general pairs of matching reconstruction loss DL (x‖r) and
reconstruction transfer functions, r = f(Bw), whose derivatives with respect to the coefficients
assume a common form (9). Examples of such pairs include the linear output function with squared
loss, and normalized exponential reconstruction with KL loss.

∂DL (x‖r)
∂w

= BT (r − x) (9)
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The derivative of the gradient of the likelihood with respect to Bk
i is the vector equation (10), where

~ei is a unit vector whose ith element is 1.
∂

∂Bk
i

(
∂DL (x‖r)

∂w

)
= BT

(
∂r

∂w

∂w

∂Bk
i

+
∂r

∂Bk
i

)
+~ei(rk − xk) (10)

Similarly, the derivative of the gradient of the KL-divergence prior with respect to Bk
i is the product

of a diagonal matrix and the column vector ∂w
∂Bki

(11).

∂

∂Bk
i

(
∂DP (w‖p)

∂w

)
= diag

(
1
w

)
∂w

∂Bk
i

(11)

At the MAP estimate ŵ, (10) equals negative (11), and solving for ∂ŵ
∂Bki

we get (12).

diag(
−λ
ŵ

)
∂ŵ

∂Bk
i

= BT

(
∂r̂

∂ŵ

∂ŵ

∂Bk
i

+
∂r̂

∂Bk
i

)
+~ei(r̂k − xk)

−
(
BT ∂r̂

∂ŵ
+ diag(

λ

ŵ
)
)
∂ŵ

∂Bk
i

= BT ∂r̂

∂Bk
i

+~ei(r̂k − xk)

∂ŵ

∂Bk
i

= −
(
BT ∂r̂

∂ŵ
+ diag(

λ

ŵ
)
)−1(

BT ∂r̂

∂Bk
i

+~ei(r̂k − xk)
)

(12)

This general form can be used with many loss/transfer function pairs by substituting the appropriate
partial derivatives. The partial derivatives for the transfer transfer functions used in this paper are
listed in the table below.

Transfer Function r = f(Bw) ∂r
∂w

∂r
∂Bki

Linear Bw B ~ekwi

Normalized Exponential eBwP
j eB

jw
(diag(r)− rrT )B (~ek − r)wirk

D Text Application Details

Minimizing KL-divergence loss between the empirical probability distribution (type) of the docu-
ment given in the input vector x and the reconstructed type after applying the normalized exponential
transfer function r = f(B,w) = eBwP

eBw
(14) is equivalent to maximizing the “constrained poisson

distribution” used to model documents in [1] , where N is the number of words in the document
(13).

P (X|Nr) =
∏

i

e−Nri(Nri)Xi

Xi!
(13)

−log(P (X|Nr) =
∑

i

Nri −Xi logNri + log (Xi!) = N
∑

i

ri − x̄i log ri + C

KL(x̄‖r) =
∑

i

ri − x̄i log ri + x̄i log x̄i − xi =
∑

i

ri − x̄i log ri + C (14)

Since our reconstruction and transfer functions are matched, the sparse coding update equations
follow from substituting the normalized exponential transfer function into the general equations
given in the implementation section.

E Music Genre Classification

A music genre classification task was also used for L1 sparse coding in [2], and consists of 15,
60-second musical clips from each of 17 different genres. Following their practice, each song was
divided into 50ms snippets, and the magnitude of the spectrogram for each snippet were used as
input examples. For reconstruction, squared loss was used with a linear transfer function, and a
maxent classifier was used for classification. The first 10 genres were used as unlabeled data to
learn B via sparse coding, 10 clips from each of the other 7 genres were used as training data and
5 clips were used as testing data. As shown in Table 1, KL-regularization improved classification
performance on the same basis over L1-regularization.
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Training Set Size PCA L1 KL
200 32% 31% 33%
2000 43% 43% 45%

10000 48% 49% 50%

Table 1: Classification Accuracy on a 7-way music genre classification task is increased by using the KL prior
for sparse approximation.
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