
Learning Bounded Treewidth Bayesian Networks

Gal Elidan
Department of Statistics

Hebrew University
Jerusalem, 91905, Israel
galel@huji.ac.il

Stephen Gould
Department of Electrical Engineering

Stanford University
Stanford, CA 94305, USA
sgould@stanford.edu

Abstract
With the increased availability of data for complex domains, it is desirable to
learn Bayesian network structures that are sufficiently expressive for generaliza-
tion while also allowing for tractable inference. While the method of thin junction
trees can, in principle, be used for this purpose, its fully greedy nature makes it
prone to overfitting, particularly when data is scarce. In this work we present a
novel method for learning Bayesian networks of bounded treewidth that employs
global structure modifications and that is polynomial in the size of the graph and
the treewidth bound. At the heart of our method is a triangulated graph that we
dynamically update in a way that facilitates the addition of chain structures that
increase the bound on the model’s treewidth by at most one. We demonstrate the
effectiveness of our “treewidth-friendly” method on several real-life datasets. Im-
portantly, we also show that by using global operators, we are able to achieve bet-
ter generalization even when learning Bayesian networks of unbounded treewidth.

1 Introduction

Recent years have seen a surge of readily available data for complex and varied domains. Accord-
ingly, increased attention has been directed towards the automatic learning of complex probabilistic
graphical models [22], and in particular learning thestructureof a Bayesian network. With the goal
of making predictions or providing probabilistic explanations, it is desirable to learn models that
generalize well and at the same time have low inference complexity or a small treewidth [23].

While learning optimal tree-structured models is easy [5], learning the optimal structure of general
and even quite simple (e.g., poly-trees, chains) Bayesian networks is computationally difficult [8,
10, 19]. Several works attempt to generalize the tree-structure result of Chow and Liu [5], either
by making assumptions about the true distribution (e.g., [1, 21]), by searching for a local maxima
over tree mixtures [20], or by approximate methods that are polynomial in the size of the graph but
exponential in the treewidth bound (e.g., [3, 15]). In the context of general Bayesian networks, the
thin junction tree approach of Bach and Jordan [2] is a local greedy search procedure that relies
at each step on tree-decomposition heuristic techniques for computing an upper bound the true
treewidth of the model. Like any local search approach, this method does not provide performance
guarantees but is appealing in its ability to efficiently learn models with an arbitrary treewidth bound.

The thin junction tree method, however, suffers from two important limitations. First, while useful
on average, even the best of the tree-decomposition heuristics exhibit some variance in the treewidth
estimate [16]. As a result, a single edge addition can lead to a jump in thetreewidth estimatedespite
the fact that it can increase thetrue treewidthby at most one. More importantly, structure learning
scores (e.g., BIC, BDe) tend to learn spurious edges that result in overfitting when the number of
samples is relatively small, a phenomenon that is made worse by a fully greedy approach. Intu-
itively, to generalize well, we want to learn bounded treewidth Bayesian networks where structure
modifications are globally beneficial (i.e., contribute to the score in many regions of the network).

In this work we propose a novel method for efficiently learning Bayesian networks of bounded
treewidth that addresses these concerns. At the heart of our method is a dynamic update of the
triangulation of the model in a way that is tree-width friendly: the treewidth of the triangulated
graph (upper bound on the model’s true treewidth) is guaranteed to increase by at most one when an

1

edge is added to the network. Building on the single edge triangulation, we characterize sets of edges
that arejointly treewidth-friendly. We use this characterization in a dynamic programming approach
for learning the optimal treewidth-friendly chain with respect to a node ordering. Finally, we learn
a bounded treewidth Bayesian network by iteratively augmenting the model with such chains.

Instead of using local edge modifications, our method progresses by incrementally adding chain
structures that are globally beneficial, improving our ability to generalize. We are also able to
guaranteethat the bound on the model’s treewidth grows by at most one at each iteration. Thus, our
method resembles the global nature of Chow and Liu [5] more closely than the thin junction tree
approach of Bach and Jordan [2], while being applicable in practice to any desired treewidth.

We evaluate our method on several challenging real-life datasets and show that our method is able
to learn richer models that generalize better than the thin junction tree approach as well as an un-
bounded aggressive search strategy. Furthermore, we show that even when learning models with
unbounded treewidth, by using global structure modification operators, we are better able to cope
with the problem of local maxima and learn better models.

2 Background: Bayesian networks and tree decompositions

A Bayesian network[22] is a pair(G,Θ) that encodes a joint probability distribution over a finite
setX = {X1, . . . , Xn} of random variables.G is a directed acyclic graph whose nodes correspond
to the variables inX . The parametersΘXi|Pai

encode localconditional probability distributions
(CPDs) for each nodeXi given its parents inG. Together, these define a unique joint probability
distribution overX given byP (X1, . . . , Xn) =

∏n

i=1 P (Xi | Pai).

Given a structureG and a complete training setD, estimating the (regularized)maximum likelihood
(ML) parameters is easy for many choices of CPDs (see [14] for details). Learning the structure of
a network, however, is generally NP-hard [4, 10, 19] as the number of possible structures is super-
exponential in the number of variables. In practice, structure learning relies on a greedy search
procedure that examines easy to evaluate local structure changes (add, delete or reverse an edge).
This search is usually guided by a decomposable score that balances the likelihood of the data and
the complexity of the model (e.g., BIC [24],Bayesian score[14]). Chow and Liu [5] showed that
the ML tree can be learned efficiently. Their result is easily generalized to any decomposable score.

Given a model, we are interested in the task of inference, or evaluating queries of the formP (Y | Z)
whereY andZ are arbitrary subsets ofX . This task is, in general, NP-hard [7], except whenG is
tree structured. The actual complexity of inference in a Bayesian network is proportional to its
treewidth[23] which, roughly speaking, measures how closely the network resembles a tree. The
notions of tree-decompositions and treewidth were introduced by Robertson and Seymour [23]:1

Definition 2.1: A tree-decomposition of an undirected graphH = (V,E) is a pair({Ci}i∈T , T),
whereT is a tree,{Ci} is a subset ofV such that

⋃

i∈T Ci = V and where
• for all edges(v, w) ∈ E there exists ani ∈ T with v ∈ Ci andw ∈ Ci.
• for all i, j, k ∈ T : if j is on the (unique) path fromi to k in T , thenCi ∩ Ck ⊆ Cj .

The treewidth of a tree-decomposition is defined to bemaxi∈T |Ci| − 1. The treewidthTW (H) of
an undirected graphH is the minimum treewidth over all possible tree-decompositions ofH. An
equivalent notion of treewidth can be phrased in terms of a graph that is a triangulation ofH.

Definition 2.2: An induced pathP in an undirected graphH is a path such that for every non-
adjacent verticespi, pj ∈ P there is no edge(pi—pj) ∈ H. A triangulated (chordal) graph is an
undirected graph with no induced cycles. Equivalently, it is an undirected graph in which every
cycle of length four or more contains a chord.

It can be easily shown that the treewidth of a triangulated graph is the size of the maximal clique of
the graph minus one [23]. The treewidth of an undirected graphH is then the minimum treewidth
of all triangulations ofH. For the underlying directed acyclic graph of a Bayesian network, the
treewidth can be characterized via a triangulation of the moralized graph.

Definition 2.3: A moralized graphM of a directed acyclic graphG is an undirected graph that has
an edge(i—j) for every(i → j) ∈ G and an edge(p—q) for every pair(p → i), (q → i) ∈ G.

1The tree-decomposition properties are equivalent to the correspondingfamily preservingandrunning in-
tersectionproperties of clique trees introduced by Lauritzen and Spiegelhalter [17] at around the same time.

2

Input: datasetD, treewidth boundK
Output: a network with treewidth≤ K
G ← best scoring tree
M+ ← undirected skeleton ofG
k ← 1
While k < K
O ← node ordering givenG andM+

C ← best chain with respect toO
G ← G ∪ C
Foreach(i→ j) ∈ C do
M+ ← EdgeUpdate(M+, (i→ j))

k ←maximal clique size ofM+

Greedily add edges while treewidth≤ K
Return G

s

cM

t

p1 p2

v2 v3v1

s

cM

t

p1 p2 s

cM

t

p1 p2

(a) (b) (c)

cM

t

p1 p2s

cM

t

p1 p2s s

cM

t

p1 p2

(d) (e) (f)

Figure 1: (left) Outline of our algorithm for learning Bayesian networks of bounded treewidth.(right) An
example of the different steps of our triangulation procedure (b)-(e) when(s→ t) is added to the graph in (a).
The blocks are{s, v1}, {v1, cM}, and{cM , v2, v3, p1, p2, t} with corresponding cut-verticesv1 andcM . The
augmented graph (e) has a treewidth of three (maximal clique of size four). An alternative triangulation (f),
connectingcM to t, would result in a maximal clique of size five.

The treewidth of a Bayesian network graphG is defined as the treewidth of its moralized graphM.
It follows that the maximal clique ofany moralized triangulation ofG is an upper bound on the
treewidth of the model, and thus its inference complexity.

3 Learning Bounded Treewidth Bayesian Networks

In this section we outline our approach for learning Bayesian networks given an arbitrary treewidth
bound that is polynomial in both the number of variables and the desired treewidth. We rely on
global structure modifications that are optimal with respect to a node ordering.

At the heart of our method is the idea of using a dynamically maintained triangulated graph to upper
bound the treewidth of the current model. When an edge is added to the Bayesian network we update
this triangulated graph in a way that is not only guaranteed to produce a valid triangulation, but that
is also treewidth-friendly. That is, our update is guaranteed to increase the size of the maximal clique
of the triangulated graph, and hence the treewidth bound, by at most one. An important property of
our edge update is that we can characterize the parts of the network that are “contaminated” by the
new edge. This allows us to define sets of edges that arejointly treewidth-friendly. Building on the
characterization of these sets, we propose a dynamic programming approach for efficiently learning
the optimal treewidth-friendly chain with respect to a node ordering.

Figure 1 shows pseudo-code for our method. Briefly, we learn a Bayesian network with bounded
treewidthK by starting from a Chow-Liu tree and iteratively augmenting the current structure with
an optimaltreewidth-friendly chain. During each iteration (below the treewidth bound) we apply
our treewidth-friendly edge update procedure that maintains a moralized and triangulated graph for
the model at hand. Appealingly, as each global modification can increase the treewidth by at most
one, at leastK such chains will be added before we face the problem of local maxima. In practice,
as some chains do not increase the treewidth, many more such chains are added for a givenK.

Theorem 3.1: Given a treewidth boundK and dataset overN variables, the algorithm outlined in
Figure 1 runs in time polynomial inN andK.

This result relies on the efficiency of each step of the algorithm and that there can be at mostN · K
iterations (≤ |edges|) before exceeding the treewidth bound. In the next sections we develop the
edge update and best scoring chain procedures and show that both are polynomial inN andK.

4 Treewidth-Friendly Edge Update

The basic building block of our method is a procedure for maintaining a valid triangulation of the
Bayesian network. An appealing feature of this procedure is that the treewidth bound is guaranteed
to grow by at most one after the update. We first consider single edge(s → t) addition to the model.
For clarity of exposition, we start with a simple variant of our procedure, and later refine this to
allow for multiple edge additions while maintaining our guarantee on the treewidth bound.

3

To gain intuition into how the dynamic nature of our update is useful, we use the notion of induced
paths or paths with no shortcuts (see Section 2), and make explicit the following obvious fact:

Observation 4.1: Let G be a Bayesian network structure and letM+ be a moralized triangulation
of G. Let M(s→t) beM+ augmented with the edge(s—t) and with the edges(s—p) for every
parentp of t in G. Then, every non-chordal cycle inM(s→t) involvess and eithert or a parent oft
and an induced path between the two vertices.

Stated simply, if the graph was triangulated before the addition of (s → t) to the Bayesian network,
then we only need to triangulate cycles created by the addition of the new edge or those forced by
moralization. This observation immediately suggests a straight-forwardsingle-source triangulation
whereby we simply add an edge(s—v) for every nodev on an induced path betweens andt or its
parents before the edge update. Clearly, this naive method results in a valid moralized triangulation
of G ∪ (s → t). Surprisingly, we can also show that it is treewidth-friendly.

Theorem 4.2: The treewidth of the graph produced by thesingle-source triangulationprocedure is
greater than the treewidth of the input graphM+ by at most one.

Proof: (outline) For the treewidth to increase by more than one, some maximalC in M+ needs to
connect to two new nodes. Since all edges are being added froms, this can only happen in one of
two ways: (i) eithert, a parentp of t, or a nodev on induced path betweens andt is also connected
to C, but not part ofC, or (ii) two such (non-adjacent) nodes exist ands is in C. In either case one
edge is missing after the update procedure preventing the formation of a larger clique.

One problem with the proposed single-source triangulation,despite it being treewidth-friendly, is
that many vertices are connected to the source node, making the triangulations shallow. This can
have an undesirable effect on future edge additions and increases the chances of the formation of
large cliques. We can alleviate this problem with a refinement of the single-source triangulation
procedure that makes use of the concepts of cut-vertices, blocks, and block trees.

Definition 4.3: A block of an undirected graphH is a set of connected nodes that cannot be discon-
nected by the removal of a single vertex. By convention, if the edge(u—v) is inH thenu andv are
in the same block. Vertices that separate (are in the intersection of) blocks are called cut-vertices.

It is easy to see that between every two nodes in a block of size greater than two there are at least
two distinct paths, i.e. a cycle. There are also no simple cycles involving nodes in different blocks.

Definition 4.4: The (unique) block treeB of an undirected graphH is a graph with nodes that
correspond both to cut-vertices and to blocks ofH. The edges in the block tree connect any block
nodeBi with a cut-vertex nodevj if and only if vj ∈ Bi in H.

It can be easily shown that any path inH between two nodes in different blocks passes through all
the cut-vertices along the path between the blocks inB. An important consequence that follows
from Dirac [11] is that an undirected graph whose blocks are triangulated is overall triangulated.

Our refined treewidth-friendly triangulation procedure (illustrated via an example in Figure 1) makes
use of this fact as follows. First, the triangulated graph is augmented with the edge(s—t) and any
edges needed for moralization (Figure 1(b) and (c)). Second, a block level triangulation is carried
out by zig-zagging across cut-vertices along the unique path between the blocks containings and
t and its parents (Figure 1(d)). Next, within each block (not containings or t) along the path, a
single-source triangulation is performed with respect to the “entry” and “exit” cut-vertices. This
short-circuits any othernode paththrough (and within) the block. For the block containings the
single-source triangulation is performed betweens and the “exit” cut-vertex. The block containing
t and its parents is treated differently: we add chords directly froms to any nodev within the block
that is on aninduced pathbetweens andt (or parents oft) (Figure 1(e)). This is required to prevent
moralization and triangulation edges from interacting in a way that will increase the treewidth by
more than one (e.g., Figure 1(f)). Ifs andt happen to be in the same block, then we only triangulate
the induced paths betweens andt, i.e., the last step outlined above. Finally, in the special case thats
andt are indisconnectedcomponents ofG, the only edges added are those required for moralization.

Theorem 4.5:Our revised edge update procedure results in a triangulated graph with a treewidth at
most one greater than that of the input graph. Furthermore, it runs in polynomial time.

Proof: (outline) First, observe that the final step of adding chords emanating froms is a single-
source triangulation once the other steps have been performed. Since each block along the block
path betweens andt is triangulated separately, we only need to consider the zig-zag triangulation be-
tween blocks. As this creates 3-cycles, the graph must also be triangulated. To see that the treewidth

4

increases by at most one, we use similar arguments to those used in the proof of Theorem 4.2, and
observe that the zig-zag triangulation only touches cut-vertices and any three of these vertices could
not have been in the same clique. The fact that the update procedure runs in polynomial time follows
from the fact that an adaptation (not shown for lack of space) of maximum cardinality search (see,
for example [16]) can be used to efficiently identify all induced nodes betweens andt.

Multiple Edge Updates.We now consider the addition of multiple edges to the graphG. To ensure
that multiple edges do not interact in ways that will increase the treewidth bound by more than one,
we need to characterize the nodescontaminatedby each edge addition—a nodev is contaminated
by the adding(s → t) to G if it is incident to anew edge added during our treewidth friendly
triangulation. Below are several examples of contaminated sets (solid nodes) incident to edges
added (dashed) by our edge update procedure for different candidate edge additions(s → t) to the
Bayesian network on the left. In all examples except the last treewidth is increased by one.

s

t
s

t s

t
s

t

s

t

Using the notion of contamination, we can characterize sets of edges that arejointly treewidth-
friendly. We will use this to learn optimal treewidth friendly chains given a ordering in Section 5.

Theorem 4.6: (Treewidth-friendly set). Let G be a graph structure andM+ be its corresponding
moralized triangulation. If{(si → ti)} is a set of candidate edges satisfying the following:

• the contaminated sets of any(si → ti) and(sj → tj) are disjoint, or,
• the contaminated sets overlap at a single cut-vertex,but the endpoints of each edge are not

in the same blockandthe block paths between the endpoints do not overlap;

then adding all edges toG can increase the treewidth bound by at most one.

Proof: (outline) The theorem holds trivially for the first condition. Under the second condition, the
only common vertex is a cut-vertex. However, since all other contaminated nodes are in in different
blocks, they cannot interact to form a large clique.

5 Learning Optimal Treewidth-Friendly Chains

In the previous section we described our edge update procedure and characterized edge chains that
jointly increase the treewidth bound by at most one. We now use this to search for optimal chain
structures that satisfy Theorem 4.6, and are thus treewidth friendly, given a topological node or-
dering. On the surface, one might question the need for a specific node ordering altogether if chain
global operators are to be used—given the result of Chow and Liu [5], one might expect that learning
the optimal chain with respect toanyordering can be carried out efficiently. However, Meek [19]
showed that learning an optimal chain over a set of random variables is computationally difficult and
the result can be generalized to learning a chain conditioned the current model. Thus, during any
iteration of our algorithm, we cannot expect to find the overall optimal chain.

Instead, we commit to a single node ordering that is topologically consistent (each node appears
after its parent in the network) and learn the optimal treewidth-friendly chain with respect to that
order (we briefly discuss the details of our ordering below). To find such a chain in polynomial
time, we use a straightforward dynamic programming approach: the best treewidth-friendly chain
that contains(Os → Ot) is the concatenation of:

• the best chain from the first nodeO1 toOF , the first node contaminated by(Os → Ot)

• the edge(Os → Ot)

• the best chain starting from
the last node contaminatedOL

to the last node in the orderON . O1 OsOF OL ON

optimal chain optimal chain

Ot

We note that when the end nodes are not separating cut-vertices, we maintain a gap so that the
contamination sets are disjoint and the conditions of Theorem 4.6 are met.

5

5 10 15 20 25 30 35 40 45 50 55 60

-5

-4

-3

-2

-1

0

1

T
es

t l
og

-lo
ss

 /
in

st
an

ce

Treewidth bound

Ours

Thin Junction-tree

Aggressive

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

9

10

11

Iteration

Treewidth bound

Length of chain

0 10 20 30 40 50 60

5

10

15

20

25

30

Treewidth bound

R
un

tim
e

in
 m

in
ut

es

Thin Junction tree

Ours

Figure 2: Gene expression results:(left) 5-fold mean test log-loss per/instance vs. treewidth bound. Our
method (solid blue squares) is compared to the thin junction tree method (dashed red circles), and an unbounded
aggressive search (dotted black).(middle) the treewidth estimate and the number of edges in the chain during
the iterations of a typical run with the bound set to 10.(right) shows running time as a function of the bound.

Formally, we defineC[i, j] as the optimal chain whose contamination is limited to the range[Oi,Oj]
and our goal is to computeC[1, N]. Using F to denote the first node ordered in the contamination set
of (s → t) (and L for the last), we can computeC[1, N] via the following recursive update principle

C[i, j] =

{

maxs,t:F=i,L=j(s → t) no split
maxk=i+1:j−1 C[i, k] ∪ C[k, j] split
∅ leave a gap

where the maximization is with respect to the structure score (e.g., BIC). That is, the best chain in a
subsequence[i, j] in the ordering is the maximum of three alternatives: edges whose contamination
boundaries are exactlyi andj (no split); two chains that are joined at some nodei < k < j (split);
a gap betweeni andj when there is no positive edge whose contamination is in[i, j].

Finally, for lack of space we only provide a brief description of our topological node ordering.
Intuitively, since edges contaminate nodes along the block path between the edge’s endpoints (see
Section 4), we want to adopt a DFS ordering over the blocks so as to facilitate as many edges as
possible between different branches of the block tree. We order nodes with a block by the distance
from the “entry” vertex as motivated by the following result on the distancedM

min (u, v) between
nodesu, v in the triangulated graphM+ (proof not shown for lack of space):

Theorem 5.1: Let r, s, t be nodes in a blockB in the triangulated graphM+ with dM
min (r, s) ≤

dM
min (r, t). Then for anyv on an induced path betweens andt we havedM

min (r, v) ≤ dM
min (r, t).

The efficiency of our method outlined in Figure 1 in the number of variables and the treewidth bound
(Theorem 3.1) now follows from the efficiency of the ordering and chain learning procedures.

6 Experimental Evaluation

We compare our approach on four real-world datasets to several methods. The first is an improved
variant of the thin junction tree method [2]. We start (as in our method) with a Chow-Liu forest and
iteratively add the single best scoring edge as long as the treewidth bound is not exceeded. To make
the comparison independent of the choice of triangulation method, at each iteration we replace the
heuristic triangulation (best of maximum cardinality search or minimum fill-in [16], which in prac-
tice had negligible differences) with our triangulation if it results in a lower treewidth.The second
baseline is an aggressive structure learning approach that combines greedy edge modifications with
a TABU list (e.g., [13]) and random moves and that is not constrained by a treewidth bound. Where
relevant we also compare our results to the results of Chechetka and Guestrin [3].

Gene Expression.We first consider a continuous dataset of the expression of yeast genes (variables)
in 173 experiments (instances) [12]. We learn sigmoid Bayesian networks using the BIC structure
score [24] using the fully observed set of 89 genes that participate in general metabolic processes.
Here a learned model indicates possible regulatory or functional connections between genes.

Figure 2(a) shows test log-loss as a function of treewidth bound. The first obvious phenomenon
is that both our method and the thin junction tree approach are superior to the aggressive baseline.
As one might expect, the aggressive baseline achieves a higher BIC score on training data (not
shown), but overfits due to the scarcity of the data. The consistent superiority of our method over
thin junction trees demonstrates that a better choice of edges, i.e., ones chosen by a global operator,
can lead to increased robustness and better generalization. Indeed, even when the treewidth bound

6

100 200 300 400 500 600 700 800 900 1000

-65

-60

-55

-50

-45

T
es

t l
og

-lo
ss

 /
in

st
an

ce

Training instances

Ours
Thin Junction-tree

Aggressive

Chechetka+Guestrin

100 200 300 400 500 600 700 800 900 1000

-38

-36

-34

-32

-30

T
es

t l
og

-lo
ss

 /
in

st
an

ce

Training instances

Ours

Thin Junction-tree

Aggressive

Chechetka+Guestrin

Figure 3: 5-fold mean test log-loss/instance for a treewidth
bound of two vs. training set size for the temperature (left) and
traffic (right) datasets. Compared are our approach (solid blue
squares), the thin junction tree method (dashed red circles), an
aggressive unbounded search (dotted black), and the method of
Chechetka and Guestrin [3] (dash-dot magenta diamonds).

2 4 6 8 10 12 14 16 18 20

-36

-34

-32

-30

-28

T
es

t l
og

-lo
ss

 /
in

st
an

ce

Treewidth bound

Ours

Thin Junction-tree

[unordered]

Figure 4: Average log-loss vs. treewidth
bound for the Hapmap data. Compared
are an unbounded aggressive search (dot-
ted) and unconstrained (thin) and con-
strained by the DNA order (thick) variants
of ours and the thin junction tree method.

is increased past the saturation point, our method surpasses both baselines. In this case, we are
learning unbounded networks and all benefit comes from the global nature of our updates.

To qualitatively illustrate the progression of our algorithm, in Figure 2(b) we plot the number of
edges in the chain and the treewidth estimate at the end of each iteration for a typical run. Our
algorithm aggressively adds multi-edge chains until the treewidth bound is reached, at which point
(iteration 24) it becomes fully greedy. To appreciate the non-triviality of some of the chains learned
with 4−7 edges, we recall that the chains are addedaftera Chow-Liu model was initially learned. It
is also worth noting that despite their complexity, some chains do not increase the treewidth estimate
and we typically have more thanK iterations where chains with more than one edge are added. The
number of such iterations is still polynomially bounded as for a Bayesian network withN variables
adding more thanK · N edges will necessarily result in a treewidth that is greater thanK.

To evaluate the efficiency of our method we measured its running time as a function of the treewidth
bound. Figure 2(c) shows results for the gene expression dataset. Observe that our method and the
greedy thin junction tree approach are both approximately linear in the treewidth bound. Appeal-
ingly, the additional computation our method requires is not significant (≤25%). This should not
come as a surprise as the bulk of the time is spent on the collection of the data sufficient statistics.

It is also worth discussing the range of treewidths we considered in the above experiment as well as
the Haplotype experiment below. While treewidths greater than 25 seem excessive for exact infer-
ence, state-of-the-art techniques (e.g., [9, 18]) can reasonably handle inference in networks of this
complexity. Furthermore, as our results show, it is beneficial in practice to learn such models. Thus,
combining our method with state-of-the-art inference techniques can allow practitioners to push the
envelope of the complexity of models learned for real applications that rely on exact inference.

The Traffic and Temperature Datasets.We now compare our method to the mutual-information
based LPACJT approach of Chechetka and Guestrin [3] (we compare to the better variant). As their
method is exponential in the treewidth and cannot be used in the gene expression setting, we compare
to it on the two discrete real-life datasets Chechetka and Guestrin [3] considered: the temperature
data is from a deployment of 54 sensor nodes; the traffic dataset contains traffic flow information
measured every 5 minutes in 32 locations in California. To make the comparison fair, we used the
same discretization and train/test splits. Furthermore, as their method can only be applied to a small
treewidth bound, we also limited our model to a treewidth of two. Figure 3 compares the different
methods. Both our method and the thin junction tree approach significantly outperform the LPACJT
on small sample sizes. This result is consistent with the results reported in Chechetka and Guestrin
[3] and is due to the fact that the LPACJT method does not facilitate the use of regularization which
is crucial in the sparse-data regime. The performance of our method is comparable to the greedy
thin junction tree approach with no obvious superiority of either method. This should not come as a
surprise since the fact that the unbounded aggressive search is not significantly better suggests that
the strong signal in the data can be captured rather easily. In fact, Chechetka and Guestrin [3] show
that even a Chow-Liu tree does rather well on these datasets (compare this to the gene expression
dataset where the aggressive variant was superior even at a treewidth of five).

Haplotype Sequences.Finally we consider a more difficult discrete dataset of a sequence of single
nucleotide polymorphism (SNP) alleles from the Human HapMap project [6]. Our model is defined
over 200 SNPs (binary variables) from chromosome 22 of a European population consisting of 60
individuals (we considered several different sequences along the chromosome with similar results).

7

In this case, there is a natural ordering of variables that corresponds to the position of the SNPs in
the DNA sequence. Figure 4 shows test log-loss results when this ordering is enforced (thicker)
and when it is not (thinner). The superiority of our method when the ordering is used is obvious
while the performance of the thin junction tree method degrades. This can be expected as the greedy
method does not make use of a node ordering, while our method provides optimality guarantees with
respect to a variable ordering at each iteration. Whether constrained to the natural variable ordering
or not, our method ultimately also surpasses the unbounded aggressive search.

7 Discussion and Future Work

In this work we presented a novel method for learning Bayesian networks of bounded treewidth in
time that is polynomial inboththe number of variables and the treewidth bound. Our method builds
on an edge update algorithm that dynamically maintains a valid moralized triangulation in a way
that facilitates the addition of chains that are guaranteed to increase the treewidth bound by at most
one. We demonstrated the effectiveness of our treewidth-friendly method on real-life datasets, and
showed that by utilizing global structure modification operators, we are able to learn better models
than competing methods, even when the treewidth of the models learned is not constrained.

Our method can be viewed as a generalization of the work of Chow and Liu [5] that is constrained to
a chain structure but that provides an optimality guarantee (with respect to a node ordering) at every
treewidth. In addition, unlike the thin junction trees approach of Bach and Jordan [2], we provide
a guarantee that our estimate of the treewidth bound will not increase by more than one at each
iteration. Furthermore, we add multiple edges at each iteration, which in turn allows us to better
cope with the problem of local maxima in the search. To our knowledge, ours is the first method for
efficiently learning Bayesian networks with an arbitrary treewidth bound that is not fully greedy.

Our method motivates several exciting future directions. It would be interesting to see to what
extent we could overcome the need to commit to a specific node ordering at each iteration. While
we provably cannot consider every ordering, it may be possible to polynomially provide a reasonable
approximation. Second, it may be possible to refine our characterization of the contamination that
results from an edge update, which in turn may facilitate the addition of more complex treewidth-
friendly structures at each iteration. Finally, we are most interested in exploring whether tools
similar to the ones employed in this work could be used to dynamically update the bounded treewidth
structure that is the approximating distribution in a variational approximate inference setting.

References
[1] P. Abbeel, D. Koller, and A. Ng. Learning factor graphs in poly. time & sample complexity.JMLR, 2006.
[2] F. Bach and M. I. Jordan. Thin junction trees. InNIPS, 2001.
[3] A. Chechetka and C. Guestrin. Efficient principled learning of thin junction trees. InNIPS. 2008.
[4] D. Chickering. Learning Bayesian networks is NP-complete. InLearning from Data: AI & Stats V. 1996.
[5] C. Chow and C. Liu. Approx. discrete distrib. with dependence trees.IEEE Trans. on Info. Theory, 1968.
[6] The International HapMap Consortium. The international hapmap project.Nature, 2003.
[7] G. F. Cooper. The computationl complexity of probabilistic inference using belief networks.AI, 1990.
[8] P. Dagum and M. Luby. An optimal approximation algorithm for baysian inference.AI, 1993.
[9] A. Darwiche. Recursive conditioning.Artificial Intelligence, 2001.

[10] S. Dasgupta. Learning polytrees. InUAI, 1999.
[11] G. A. Dirac. On rigid circuit graphs. Abhandlungen aus dem Math. Seminar der Univ. Hamburg 25, 1961.
[12] A. Gasch et al. Genomic expression program in the response of yeast cells to environmental changes.

Molecular Biology of the Cell, 2000.
[13] F. Glover and M. Laguna. Tabu search. InModern Heuristic Tech. for Comb. Problems, 1993.
[14] D. Heckerman. A tutorial on learning Bayesian networks. Technical report, Microsoft Research, 1995.
[15] D. Karger and N. Srebro. Learning markov networks: maximum bounded tree-width graphs. InSympo-

sium on Discrete Algorithms, 2001.
[16] A. Koster, H. Bodlaender, and S. Van Hoesel. Treewidth: Computational experiments. Technical report,

Universiteit Utrecht, 2001.
[17] S. Lauritzen and D. Spiegelhalter. Local computations with probabilities on graphical structures.Journal

of the Royal Statistical Society, 1988.
[18] R. Marinescu and R. Dechter. And/or branch-and-bound for graphical models.IJCAI, 2005.
[19] C. Meek. Finding a path is harder than finding a tree.Journal of Artificial Intelligence Research, 2001.
[20] M. Meila and M. I. Jordan. Learning with mixtures of trees.JMLR, 2000.
[21] M. Narasimhan and J. Bilmes. Pac-learning bounded tree-width graphical models. InUAI, 2004.
[22] J. Pearl.Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.
[23] N. Robertson and P. Seymour. Graph minors II. algorithmic aspects of tree-width.J. of Algorithms, 1987.
[24] G. Schwarz. Estimating the dimension of a model.Annals of Statistics, 6:461–464, 1978.

8

