Adaptive Embedded Subgraph Algorithms using Walk-Sum Analysis

Part of Advances in Neural Information Processing Systems 20 (NIPS 2007)

Bibtex Metadata Paper

Authors

Venkat Chandrasekaran, Alan Willsky, Jason Johnson

Abstract

We consider the estimation problem in Gaussian graphical models with arbitrary structure. We analyze the Embedded Trees algorithm, which solves a sequence of problems on tractable subgraphs thereby leading to the solution of the estimation problem on an intractable graph. Our analysis is based on the recently developed walk-sum interpretation of Gaussian estimation. We show that non-stationary iterations of the Embedded Trees algorithm using any sequence of subgraphs converge in walk-summable models. Based on walk-sum calculations, we develop adaptive methods that optimize the choice of subgraphs used at each iteration with a view to achieving maximum reduction in error. These adaptive procedures provide a significant speedup in convergence over stationary iterative methods, and also appear to converge in a larger class of models.