A Game-Theoretic Approach to Apprenticeship

L earning
Umar Syed Robert E. Schapire
Computer Science Department Computer Science Department
Princeton University Princeton University
35 Olden St 35 Olden St
Princeton, NJ 08540-5233 Princeton, NJ 08540-5233
usyed@cs.princeton.edu schapire@cs.princeton.edu
Abstract

We study the problem of an apprentice learning to behave angimonment with
an unknown reward function by observing the behavior of greex We follow
on the work of Abbeel and Ng [1] who considered a framework Imiclv the true
reward function is assumed to be a linear combination of afsetown and ob-
servable features. We give a new algorithm that, like thesrguaranteed to learn
a policy that is nearly as good as the expert’s, given enoMghmples. However,
unlike their algorithm, we show that ours may produce a pdhat is substantially
better than the expert’s. Moreover, our algorithm is corapanally faster, is eas-
ier to implement, and can be applied even in the absence ofente The method
is based on a game-theoretic view of the problem, which leatigally to a direct
application of the multiplicative-weights algorithm ofdtmd and Schapire [2] for
playing repeated matrix games. In addition to our formasprgation and analysis
of the new algorithm, we sketch how the method can be appllehvthe transi-
tion function itself is unknown, and we provide an experitaédemonstration of
the algorithm on a toy video-game environment.

1 Introduction

When an agent is faced with the task of learning how to behasgestnchastic environment, a com-
mon approach is to model the situation using a Markov Degisloocess. An MDP consists of

states, actions, rewards and a transition function. Ond®é2iR has been provided, the usual objec-
tive is to find a policy (i.e. a mapping from states to actichg)t maximizes expected cumulative
reward collected by the agent.

Building the MDP model is usually the most difficult part ofglprocess. One reason is that it is
often hard to correctly describe the environment’s truearelfunction, and yet the behavior of the
agent is quite sensitive to this description. In practiegyard functions are frequently tweaked and
tuned to elicit what is thought to be the desired behaviostdad of maximizing reward, another
approach often taken is to observe and follow the behavianoéxpert in the same environment.
Learning how to behave by observing an expert has been aglleenticeship learningwith the
agent in the role of the apprentice.

Abbeel and Ng [1] proposed a novel and appealing framewarkpprenticeship learning. In this
framework, the reward function, while unknown to the apgicen is assumed to be equal to a linear
combination of a set of known features. They argued thatenihimay be difficult to correctly
describe the reward function, it is usually much easier ersp the features on which the reward
function depends.

With this setting in mind, Abbeel and Ng [1] described an &ffit algorithm that, given enough
examples of the expert's behavior, produces a policy thasd least as well as the expert with
respect to the unknown reward function. The number of exasileir algorithm requires from the
expert depends only moderately on the number of features.

While impressive, a drawback of their results is that theqremrfince of the apprentice is both upper-
and lower-bounded by the performance of the expert. Esseptitilkir algorithm is an efficient
method for mimicking the expert’s behavior. If the behavibthe expert is far from optimal, the
same will hold for the apprentice.

In this paper, we take a somewhat different approach to afipeship learning that addresses this
issue, while also significantly improving on other aspedt8lubeel and Ng'’s [1] results. We pose
the problem as learning to play a two-player zero-sum gamehiich the apprentice chooses a
policy, and the environment chooses a reward function. Ta gf the apprentice is to maximize
performance relative to the expert, even though the rewarction may be adversarially selected by
the environment with respect to this goal. A key propertywfalgorithm is that it is able to leverage
prior beliefs about the relationship between the featunelslae reward function. Specifically, if it is
known whether a feature is “good” (related to reward) or “@usersely related to reward), then the
apprentice can use that knowledge to improve its perforeafs a result, our algorithm produces
policies that can be significantly better than the expenlgp with respect to the unknown reward
function, while at the same time are guaranteed to be no worse

Our approach is based on a multiplicative weights algorithinsolving two-player zero-sum games
due to Freund and Schapire [2]. Their algorithm is espgciedili-suited to solving zero-sum games
in which the “game matrix” is extremely large. It turns ouatlour apprenticeship learning setting
can be viewed as a game with this property.

Our results represent a strict improvement over those ofeAbband Ng [1] in that our algorithm
is considerably simpler, provides the same lower bound erafiprentice’s performance relative to
the expert, and removes the upper bound on the apprentiedamance. Moreover, our algorithm
requires less computational expense — specifically, weldecta achieve their performance guar-
antee after onlyO(In k) iterations, instead of th€(k In k), wherek is the number of features on
which the reward function depends. Additionally, our alfon can be applied to a setting in which
no examples are available from the expert. In that case,lgaritnm produces a policy that is op-
timal in a certain conservative sense. We are also able eéméxdur algorithm to a situation where
the MDP’s transition functior is unknown. We conducted experiments from a small car dgivin
simulation that illustrate some of our theoretical findings

Ratliff et al[3] formulated a related problem to apprenticeship leaynin which the goal is to find
a reward function whose optimal policy is similar to the exigepolicy. Quite different from our
work, mimicking the expert was an explicit goal of their apgeh.

2 Preliminaries

Our problem setup largely parallels that outlined in Abkexsdl Ng [1]. We are given an infinite-
horizon Markov Decision Process in which the reward functims been replaced by a set of
features. Specifically, we are given an MIlP M = (S, A,v,D,0,¢), consisting of finite
state and action setS and A, discount factory, initial state distributionD, transition function
0(s,a,s') = Pr(s;11 = 8 | s = s,a;, = a), and a set ok features defined by the function
¢:S — R

The true reward functio®* is unknown. For ease of exposition, we assume Ridt) = w*-@(s),
for somew* € R*, although we also show how our analysis extends to the case this does not
hold.

For any policyr in M, the value ofr (with respect to the initial state distribution) is defingd b

V(m) 2 E

i’th*(st) ‘ 7T,9,D‘| .

t=0

where the initial state, is chosen according tb, and the remaining states are chosen according to
m andd. We also define &-lengthfeature expectationgector,

=N Z’ytqﬁ(st) ‘ m&D] .

t=0

p()

From its definition, it should be clear that “feature exp#otes” is a (somewhat misleading) abbre-
viation for “expected, cumulative, discounted featurereal” Importantly, sinc&*(s) = w*-¢(s),
we haveV/ (r) = w* - u(n), by linearity of expectation.

We say that a feature expectations vegiois ane-good estimate ofu(x) if || — p(7)||ee < €.
Likewise, we say that a policy is ¢- opt|malfor Mif |V(7) — V(7*)| < e, wherer™ is an optimal
policy for M, i.e. 7* = arg max, V (r).!

We also assume that there is a policy, called theexpert's policy which we are able to observe
executing inM. Following Abbeel and Ng [1], our goal is to find a poliaysuch thatV (r) >
V(ng) — €, even though the true reward functi®f is unknown. We also have the additional goal
of finding a policy whemo observations from the expert’s policy are available. Irt tHase, we find

a policy that is optimal in a certain conservative sense.

Like Abbeel and Ng [1], the policy we find will not necessarilg stationary, but will instead be
a mixed policy A mixed policy) is a distribution ovefl, the set of alldeterministicstationary
policies inM. Becausdl is finite (though extremely large), we can fix a numbering efplolicies

in TI, which we denoter!,...,7/"l. This allows us to treat) as a vector, where (i) is the
probability assigned ta®. A mixed policy) is executed by randomly selecting the policyc II

at time 0 with probabilitys (i), and exclusively followingr® thereafter. It should be noted that the
definitions of value and feature expectations apply to mpaities as well:V (1) = E;[V (7))
andp () = Eip[p(r")]. Also note that mixed policies do not have any advantage ste¢ionary
policies in terms of value: ifr* is an optimal stationary policy fak/, and* is an optimal mixed
policy, thenV (v*) = V(7*).

The observations from the expert’s poligy; are in the form ofm independent trajectories it
each for simplicity of the same lengfi. A trajectory is just the sequence of states visited by the
expert: (96, sio, 9}1) for theith trajectory. Lefu, = u(7g) be the expert’s feature expectations.
We compute an estimajfe, of u by averaging the observed feature values from the trajestor

1 m H
bp = EZZWW’(S;)

=0 t=0
3 Review of the Projection Algorithm

We compare our approach to the “projection algorithm” of Abband Ng [1], which finds a policy
that is at least as good as the expert's policy with respeittet@nknown reward functioh.

Abbeel and Ng [1] assume thats) € [0, 1]*, and thatR*(s) = w*-@(s) for somew* € B*, where
B* = {w: |[w|; < 1}. Givenm independent trajectories from the expert’s policy, thegurion
algorithm runs fofT iterations. It returns a mixed poliay such that|u () — pg|2 < € as long as
T andm are sufficiently large. In other words, their algorithm seak“match” the expert’s feature
expectations. The value of will necessarily be close to that of the expert’s policycsin

V(%) - V(rp)l

|w™ - “@): W gl
< W ll2llpe() — pglle 1)
< €

where in Eq. (1) we used the Cauchy-Schwartz inequality|antl|> < ||[w*||; < 1.

!Note that this is weaker than the standard definition of optimality, as the pollgynerds to be optimal
with respect to the initial state distribution, and not necessarily at everysstattaneously.

2Abbeel and Ng [1] actually presented two algorithms for this task. Bothttedame theoretical guaran-
tees, but the projection algorithm is simpler and was empirically shown to belglfgster.

The following theorem is the main result in Abbeel and Ng [However, some aspects of their
analysis are not covered by this theorem, such as the coityptefxeach iteration of the projec-
tion algorithm, and the sensitivity of the algorithm to \wars approximations. These are discussed
immediately below.

Theorem 1 (Abbedl and Ng [1]). Given an MDRR, andm independent trajectories from an ex-

pert’s policyn . Suppose we execute the projection algorithiiffaterations. Let) be the mixed
policy returned by the algorithm. Then in order for

V() — V(rg)| < e)
to hold with probability at least — ¢, it suffices that

r=9 ((6(1]j7))2 . e(lk—w)

2k 2k
In

T E s

We omit the details of the algorithm due to space constraintsnote that each iteration involves
only two steps that are computationally expensive:

and

1. Find an optimal policy with respect to a given reward fimct
2. Compute the feature expectations of a given policy.

The algorithm we present in Section 5 performs these sameneke tasks in each iteration, but
requires far fewer iterations — ju)(In k) rather tharO(k In k), a tremendous savings when the
number of features is large. Also, the projection algorithm has a post-proogsstep that requires
invoking a quadratic program (QP) solver. Comparativélg,fost-processing step for our algorithm
is trivial.

Abbeel and Ng [1] provide several refinements of the analpsitheorem 1. In particular, suppose
that each sample trajectory has lengih> (1/(1 —+)) In(1/(ex (1 —7))), and that ar p-optimal
policy is found in each iteration of the projection algoniti{see Step 1 above). Also let =
ming, cgr max, |[R*(s) — w - ¢(s)| be the “representation error” of the features. Abbeel and Ng
[1] comment at various points in their paper that, ¢, andO(eg) should be added to the error
bound of Theorem 1. In Section 5 we provide a unified analyisiiese error terms in the context
of our algorithm, and also incorporate an term that accounts for computing ap-good feature
expectations estimate in Step 2 above. We prove that ouritigois sensitive to these error terms
in a similar way as the projection algorithm.

4 Apprenticeship Learning via Game Playing

Notice the two-sided bound in Theorem 1: the theorem gueesithat the apprentice will do almost
as well as the expert, batlso almost as badly This is because the value of a policy is a linear
combination of its feature expectations, and the goal ofpitegection algorithm is to match the
expert’s feature expectations.

We will take a different approach. We assume p@t) € [—1, 1]3’“, and thatR*(s) = w* - ¢(s) for
somew* € S*, whereS* = {w € R¥ : |w]||; = 1 andw = 0}.3 The impact of this minor change
in the domains ofv and¢ is discussed further in Section 5.2. [Btbe the set of all mixed policies
in M. Now consider the optimization
= i . — W - . 3

V" = max min [w - p(yh) —w - pig ®)
Our goal will be to find (actually, to approximate) the mixealipy 1)* that achieves*. Since
V(y) = w* - pu(e) for all ¢, we have thatp™ is the policy in® that maximized/(¢) — V(7g)
with respect to the worst-case possibility for. Sincew™ is unknown, maximizing for the worst-
case is appropriate.

3We use> to denote componentwise inequality. Likewise, we useo denote strict inequality ievery
component.

We begin by noting that, becauseand) are both distributions, Eqg. (3) is in the form of a two-
person zero-surgame Indeed, this is the motivation for redefining the domainwofis we did.
The quantityv* is typically called thegame valueln this game, the “min player” specifies a reward
function by choosingv, and the “max player” chooses a mixed polig¢y The goal of the min player
is to cause the max player’s policy to perform as poorly asipte relative to the expert, and the
max player’s goal is just the opposite. A game is defined bgdtociatedame matrix In our case,
the game matrix is the x |TI| matrix

G(i,j) = W (i) — pp(i) (4)
wherep (i) is theith component ofx and we have let:/ = pu(77) be the vector of feature expecta-
tions for thejth deterministic policyr?. Now Eg. (3) can be rewritten in the form

* . T
v* = max min w' Gap. 5
Pe¥ weSk ,d) ()

In Eq. (3) and (5), the max player plays first, suggesting thatmin player has an advantage.
However, the well-knowminmax theoremf von Neumann says that we can swap the min and max
operators in Eq. (5) without affecting the game value. Ireothiords,

v* = max min w’ Gt = min max w’ Gap. (6)
PeW weSk weSk pew

Finding/* will not be useful unless we can establish that> 0, i.e. thatyy™ will do at least as well

as the expert’s policy with respect to the worst-case poggifor w*. This fact is not immediately
clear, since we are restricting ourselves to mixtures afrdeistic policies, while we do not assume
that the expert’s policy is deterministic. However, notattim the rightmost expression in Eq. (6),
the maximization ove® is done aftew — and hence the reward function — has been fixed. So
the maximum is achieved by the best policydnwith respect to this fixed reward function. Note
that if this is also an optimal policy, thert will be nonnegative. It is well-known that in any MDP
there always exists a deterministic optimal policy. Hente> 0.

In fact, we may have* > 0. Suppose it happens thafv*) = u(rg). Theny™ will dominater g,

i.e. v will have higher value thamz regardless of the actual value ef, because we assumed
thatw* > 0. Essentially, by assuming that each component of the trighiveector is nonnegative,
we are assuming that we have correctly specified the “sige’ach feature. This means that, other
things being equal, a larger value for each feature impliesger reward.

So whermv* > 0, the mixed policyys* to some extent ignores the expert, and instead exploits prio
knowledge about the true reward function encoded by thefest We present experimental results
that explore this aspect of our approach in Section 7.

5 TheMultiplicative Weights for Apprenticeship Learning (MWAL)
Algorithm

In the previous section, we motivated the goal of finding threah policy 1»* that achieves the
maximum in Eq. (3) (or equivalently, in Eq. (5)). In this deatwe present an efficient algorithm
for solving this optimization problem.

Recall the game formulated in the previous section. In timaiteology of game theoryw ande) are
calledstrategiesfor the min and max player respectively , aitd is called an optimal strategy for
the max player. Also, a strategy is calledpureif w(i) = 1 for somei.

Typically, one finds an optimal strategy for a two-playemzsum game by solving a linear program.
However, the complexity of that approach scales with the efizhe game matrix. In our case, the
game matrixG is huge, since it has as many columns as the number of detstimjpolicies in the
MDP\R.

Freund and Schapire [2] described a multiplicative weigliggorithm for finding approximately
optimal strategies in games with large or even unknown gamateices. To apply their algorithm to
a game matrbG, it suffices to be able to efficiently perform the followingdwteps:

1. Given a min player strategy, find arg maxcg w’ Gap.

2. Given a max player strategly, computew” G1p for each pure strategy.

Observe that these two steps are equivalent to the two stéps jprojection algorithm from Section
3. Step 1 amounts to finding the optimal policy in a standard?dth a known reward function.
There are a huge array of techniques available for this, agafalue iteration and policy iteration.
Step 2 is the same as computing the feature expectationsieém gplicy. These can be computed
exactly by solvingk systems of linear equations, or they can be approximatexd) itgrative tech-
niques. Importantly, the complexity of both steps scaleh e size of the MDRR, and not with
the size of the game matri®.

Our Multiplicative Weights for Apprenticeship Learning YMAL) algorithm is described below.
Lines 7 and 8 of the algorithm correspond to Steps 1 and 2ttlirabove. The algorithm is es-
sentially the MW algorithm of Freund and Schapire [2], applto a game matrix very similar to
G.% We have also slightly extended their results to allow the MVé#gorithm, in lines 7 and 8, to
estimate the optimal policy and its feature expectaticathiar than requiring that they be computed
exactly.

Algorithm 1 The MWAL algorithm
1: Given: An MDP\R M and an estimate of the expert’s feature expectatipps

-1
2: Letf = <1+,/¥> :

3: DefineG (i, p) £ (1 —~)(w(i) — fup(i)) + 2)/4, wherep € RF.

4: Initialize W™ (i) = 1fori =1,...,k.

5. fort=1,...,Tdo

6 Setw(®(i) = % fori=1,.... k.

7: Compute ar p-optimal policy#(*) for M with respect to reward functioR(s) = w(®)-¢(s).
8: Compute an z-good estimatgi'! of p®) = p(7®).

90 WO () = WO (i) - exp(In(8) - G(i, pM)) fori = 1,.. . k.

10: end for

11: Post-processing: Return the mixed poligythat assigns probabilit)% to #(), for all t €

{a,...,1.

Theorem 2 below provides a performance guarantee for thechgiglicys) returned by the MWAL
algorithm, relative to the performance of the expert andydmee value*. Its correctness is largely
based on the main result in Freund and Schapire [2]. A proafadlable in the supplement [4].
Theorem 2. Given an MDRR M, andm independent trajectories from an expert’s policy.
Suppose we execute the MWAL algorithm Foiterations. Letiyy be the mixed policy returned
by the algorithm. Letyr and ep be the approximation errors from lines 7 and 8 of the al-
gorithm. LetH > (1/(1 — v))In(1/(ex(1 — v))) be the length of each sample trajectory.
Let e = mingegr max, [R*(s) — w - ¢(s)| be the representation error of the features. Let
v* = maxyew Minyege [W - w(y) — w - pg] be the game value. Then in order for

V() 2 V(rg) + v —e)
to hold with probability at least — ¢, it suffices that
9Ink
T > ——— 8
S CIET)E ®
2 2k
> 7 In =
e e ©
(10)

where
¢ < o (2¢r + €p + 26y + 2¢p/(1 — ’Y)) (11)
3
“Note thatG in Algorithm 1, in contrast tda in Eq. (4), depends ofr; instead ofu . This is because

1 is unknown, and must be estimated. The other differences bet@emmd G are of no real consequence,
and are further explained in the supplement [4].

Note the differences between Theorem 1 and Theorem 2. Beedus 0, the guarantee of the
MWAL algorithm in (7) is at least as strong as the guaranteth®fprojection algorithm in (2), and
has the further benefit of being one-sided. Additionallg,iteration complexity of the MWAL algo-

rithm is much lower. This not only implies a faster run timat blso implies that the mixed policy
output by the MWAL algorithm consists of fewer stationaryfipes. And if a purely stationary

policy is desired, it is not hard to show that the guarante@)jmust hold for at least one of the
stationary polices in the mixed policy (this is also truetwd projection algorithm [1]).

The sample complexity in the Theorem 2 is also lower, but wiebethat this portion of our anal-
ysis applies to the projection algorithm as well [Abbeelkso@al communication], so the MWAL
algorithm does not represent an improvement in this respect

5.1 When no expert isavailable

Our game-playing approach can be very naturally and easiénded to the case where we do not
have data from an expert. Instead of finding a policy that miees Eq. (3), we find a policy*
that maximizes
i . . 12
max min [w - ()] (12)
Here ™ is the best policy for the worst-case possibility f@*. The MWAL algorithm can be
trivially adapted to find this policy just by setting, = 0 (compare (12) to (3)).

The following corollary follows straightforwardly from éhproof of Theorem 2.

Corollary 1. Given an MDRR M. Suppose we execute the ‘no expert’ version of the MWAL

algorithm for T iterations. Lety be the mixed policy returned by the algorithm. kgt ep, e be
defined as in Theorem 2. Let = maxycw mingcgr [w - p(ep)]. Then

V(y) > 0" —e (13)
if
9lnk
O) "
where
o< e—(?ep+ep3+2€R/(1*’Y))_ (15)

5.2 Representation error

Although the MWAL algorithm makes different assumptionsatthe domains ofv ande¢ than the
projection algorithm, these differences are of no real equence. The same class of reward func-
tions can be expressed under either set of assumptions ghlyodoubling the number of features.
Concretely, consider a feature functigrthat satisfies the assumptions of the projection algorithm.
Then for eacls, if ¢(s) = (f1,..., fr), defined’(s) = (f1,..., fx, —f1,.--,—f%,0). Observe that

¢’ satisfies the assumptions of the MWAL algorithm, and that,,cgr max, |[R*(s) — w - ¢(s)| >
ming, cgere+1 max; |[R*(s) — w - ¢'(s)]. So by only doubling the number of features, we can en-
sure that the representation eregrdoes not increase. Notably, employing this reduction fotbe
game valuev* to be zero, ensuring that the MWAL algorithm, like the prajec algorithm, will
mimic the expert. This obsevation provides us with someulggfidance for selecting features for
the MWAL algorithm: both the original and negated versioradgature should be used if we are
uncertain how that feature is correlated with reward.

6 When thetransition function is unknown

In the previous sections, as well as in Abbeel and Ng [1], & assumed that the transition function
0(s,a,-) was known. In this section we sketch how to remove this asiampOur approach to
applying the MWAL algorithm to this setting can be infornyatlescribed as follows: Led/ =
(S, A, 0,7, ¢) be the true MDRR for which we are missing. Consider the MLE estimat of ¢
that is formed from the expert's sample trajectories. Zet S x A be the set of state-action pairs

that are visited “most frequently” by the expert. Then afibserving enough trajectorie@,will

be an accurate estimate ®bn Z. We form a pessimistic estimaf@z of M by using@to model
the transitions irnZ, and route all other transitions to a special “dead statellofwing Kearns and
Singh [5], who used a very similar idea in their analyis of ffialgorithm, we call\/; theinduced
MDP\R onZ.
By a straightforward application of several technical leasndue to Kearns and Singh [5] and
Abbeel and Ng [6], it is possible to show that if the number xpest trajectoriesn is at least

3 3
O(ISEAL 1 ISIAL 1 15]14| n 251A4L) and we letZ be the set of state-action pairs visited by the
expert at Ieaw(% In M) times, then using\//TZ in place of M in the MWAL algorithm will
add onlyO(e) to the error bound in Theorem 2. More details are availabkaénsupplement [4],

including a precise procedure for constructiigy .

7 Experiments

For ease of comparison, we tested the MWAL algorithm and tbjegtion algorithm in a car driving
simulator that resembled the experimental setup from AldreebNg [1]. Videos of the experiments
discussed below are available in the supplement [4].

In our simulator, the apprentice must navigate a car thraagomly-generated traffic on a three-
lane highway. We define three features for this environmartollision feature if contact with
another car, and/2 otherwise), an off-road featur® (f on the grass, and/2 otherwise), and a
speed featurel('2, 3/4 and1 for each of the three possible speeds, with higher valuessjmonding

to higher speeds). Note that the features encode that, htings being equal, speed is good, and
collisions and off-roads are bad.

Fast Expert | Proj MWAL Bad Expert | Proj. MWAL No Expert MWAL

Speed Fast Fast Fast Slow Slow | Medium - Medium
Collisions (per sec) 11 11 0.5 2.23 2.23 0 - 0
Off-roads (per sec) 0 0 0 8.0 8.0 0 - 0

The table above displays the results of using the MWAL angepgtion algorithms to learn a driving
policy by observing two kinds of experts: a “fast” expertiyds at the fastest speed; indifferent to
collisions), and a “bad” expert (drives at the slowest sp&és to hit cars and go off-road). In both
cases, the MWAL algorithm leverages information encodettiénfeatures to produce a policy that
is significantly better than the expert’s policy.

We also applied the MWAL algorithm to the “no expert” settifgge Section 5.1). In that case, it
produced a policy that drives as fast as possible witholingsany collisions or off-roads. Given
our features, this is indeed the best policy for the worseaoice of reward function.

Acknowledgments

We thank Pieter Abbeel for his helpful explanatory commeegmrding his proofs. We also thank
the anonymous reviewers for their suggestions for additierperiments and other improvements.
This work was supported by the NSF under grant 11S-0325500.

References

[1] P. Abbeel, A. Ng (2004). Apprenticeship Learning via InversénRecement LearningCML 21.

[2] Y. Freund, R. E. Schapire (1999). Adaptive Game Playing Usingtiplicative Weights.Games and
Economic Behavio29, 79-103.

[3] N. Ratliff, J. Bagnell, M. Zinkevich (2006). Maximum Margin Plannin@ML 23.

[4] U. Syed, R. E. Schapire (2007). “A Game-Theoretic ApproacApprenticeship Learning — Supple-
ment”. http://www.cs.princeton.edu/"usyed/nips2007/

[5] M. Kearns, S. Singh (2002). Near-Optimal Reinforcement hizgy in Polynomlal TimeMachine Learn-
ing 49, 209-232.

[6] P. Abbeel, A. Ng (2005). Exploration and Apprenticeship Learnimgeinforcement LearningCML 22.
(Long version; available dtttp://www.cs.stanford.edu/"pabbeel/)

