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Abstract

We present an agnostic active learning algorithm for any hypothesis class
of bounded VC dimension under arbitrary data distributions. Most previ-
ous work on active learning either makes strong distributional assumptions,
or else is computationally prohibitive. Our algorithm extends the simple
scheme of Cohn, Atlas, and Ladner [1] to the agnostic setting, using re-
ductions to supervised learning that harness generalization bounds in a
simple but subtle manner. We provide a fall-back guarantee that bounds
the algorithm’s label complexity by the agnostic PAC sample complexity.
Our analysis yields asymptotic label complexity improvements for certain
hypothesis classes and distributions. We also demonstrate improvements
experimentally.

1 Introduction

Active learning addresses the issue that, in many applications, labeled data typically comes
at a higher cost (e.g. in time, effort) than unlabeled data. An active learner is given unlabeled
data and must pay to view any label. The hope is that significantly fewer labeled examples
are used than in the supervised (non-active) learning model. Active learning applies to a
range of data-rich problems such as genomic sequence annotation and speech recognition.
In this paper we formalize, extend, and provide label complexity guarantees for one of the
earliest and simplest approaches to active learning—one due to Cohn, Atlas, and Ladner [1].

The scheme of [1] examines data one by one in a stream and requests the label of any data
point about which it is currently unsure. For example, suppose the hypothesis class consists
of linear separators in the plane, and assume that the data is linearly separable. Let the
first six data be labeled as follows.
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The learner does not need to request the label of the seventh point (indicated by the arrow)
because it is not unsure about the label: any straight line with the ⊕s and ⊖s on opposite
sides has the seventh point with the ⊖s. Put another way, the point is not in the region
of uncertainty [1], the portion of the data space for which there is disagreement among
hypotheses consistent with the present labeled data.

Although very elegant and intuitive, this approach to active learning faces two problems:

1. Explicitly maintaining the region of uncertainty can be computationally cumber-
some.

2. Data is usually not perfectly separable.
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Our main contribution is to address these problems. We provide a simple generalization
of the selective sampling scheme of [1] that tolerates adversarial noise and never requests
many more labels than a standard agnostic supervised learner would to learn a hypothesis
with the same error.

In the previous example, an agnostic active learner (one that does not assume a perfect
separator exists) is actually still uncertain about the label of the seventh point, because
all six of the previous labels could be inconsistent with the best separator. Therefore, it
should still request the label. On the other hand, after enough points have been labeled, if
an unlabeled point occurs at the position shown below, chances are its label is not needed.
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To extend the notion of uncertainty to the agnostic setting, we divide the sampled data into
two groups, S and T : S contains the data for which we have determined the label ourselves
(we explain below how to ensure that they are consistent with the best separator in the class)
and T contains the data for which we have explicitly requested a label. Now, somewhat
counter-intuitively, the labels in S are completely reliable, whereas the labels in T could
be inconsistent with the best separator. To decide if we are uncertain about the label of a
new point x, we reduce to a supervised learning task: for each possible label ŷ ∈ {±1}, we
learn a hypothesis hŷ consistent with the labels in S ∪ {(x, ŷ)} and with minimal empirical
error on T . If, say, the error of the hypothesis h+1 is much larger than that of h−1, we can
safely infer that the best separator must also label x with −1 without requesting a label;
if the error difference is only modest, we explicitly request a label. Standard generalization
bounds for an i.i.d. sample let us perform this test by comparing empirical errors on S ∪ T .

The last claim may sound awfully suspicious, because S ∪T is not i.i.d.! Indeed, this is in a
sense the core sampling problem that has always plagued active learning: the labeled sample
T might not be i.i.d. (due to the filtering of examples based on an adaptive criterion), while
S only contains unlabeled examples (with made-up labels). Nevertheless, we prove that
in our case, it is in fact correct to effectively pretend S ∪ T is an i.i.d. sample. A direct
consequence is that the label complexity of our algorithm (the number of labels requested
before achieving a desired error) is never much more than the usual sample complexity of
supervised learning (and in some cases, is significantly less).

An important algorithmic detail is the specific choice of generalization bound we use in
deciding whether to request a label or not. The usual additive bounds with rate n−1/2

are too loose, e.g. we know in the zero-error case the rate should be n−1. Our algorithm
magnifies this small polynomial difference in the bound into an exponential difference in
label complexity, so it is crucial for us to use a good bound. We use a normalized bound
that takes into account the empirical error (computed on S∪T ) of the hypothesis in question.

In this paper, we present and analyze a simple agnostic active learning algorithm for general
hypothesis classes of bounded VC dimension. It extends the selective sampling scheme of
Cohn et al. [1] to the agnostic setting, using normalized generalization bounds, which we
apply in a simple but subtle manner. For certain hypothesis classes and distributions, our
analysis yields improved label complexity guarantees over the standard sample complexity
of supervised learning. We also demonstrate such improvements experimentally.

1.1 Related work

Our algorithm extends the selective sampling scheme of Cohn et al. [1] (described above)
to the agnostic setting. Most previous work on active learning either makes strong dis-
tributional assumptions (e.g. separability, uniform input distribution) [1–8], or is generally
computationally prohibitive [2, 4, 9]. See [10] for a discussion of these results.

A natural way to formulate active learning in the agnostic setting is to ask the learner to
return a hypothesis with error at most ν + ε (where ν is the error of the best hypothesis in
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the specified class) using as few labels as possible. A basic constraint on the label complexity
was pointed out by Kääriäinen [11], who showed that for any ν ∈ (0, 1/2), there are data
distributions that force any active learner that achieves error at most ν + ε to request
Ω((ν/ε)2) labels. The first rigorously-analyzed agnostic active learning algorithm, called
A2, was developed recently by Balcan, Beygelzimer, and Langford [9]. Like Cohn-Atlas-
Ladner [1], this algorithm uses a region of uncertainty, although the lack of separability
complicates matters and A2 ends up explicitly maintaining an ε-net of the hypothesis space.
Subsequently, Hanneke [12] characterized the label complexity of the A2 algorithm in terms
of a parameter called the disagreement coefficient.

Our work was inspired by both [1] and [9], and we have built heavily upon their insights. Our
algorithm overcomes their complications by employing reductions to supervised learning.1

We bound the label complexity of our method in terms of the same parameter as used for
A2 [12], and get a somewhat better dependence (linear rather than quadratic).

2 Preliminaries

2.1 Learning framework and uniform convergence

Let X be the input space, D a distribution over X × {±1} and H a class of hypotheses
h : X → {±1} with VC dimension vcdim(H) = d < ∞ (the finiteness ensures the nth
shatter coefficient S(H, n) is at most O(nd) by Sauer’s lemma). We denote by DX the
marginal of D over X . In our active learning model, the learner receives unlabeled data
sampled from DX ; for any sampled point x, it can optionally request the label y sampled
from the conditional distribution at x. This process can be viewed as sampling (x, y) from D
and revealing only x to the learner, keeping the label y hidden unless the learner explicitly
requests it. The error of a hypothesis h under D is errD(h) = Pr(x,y)∼D[h(x) 6= y], and on a
finite sample Z ⊂ X×{±1}, the empirical error of h is err(h,Z) =

∑

(x,y)∈Z 1l[h(x) 6= y]/|Z|,
where 1l[·] is the 0-1 indicator function. We assume for simplicity that the minimal error
ν = inf{errD(h) : h ∈ H} is achieved by a hypothesis h∗ ∈ H.

Our algorithm uses the following normalized uniform convergence bound [14, p. 200].

Lemma 1 (Vapnik and Chervonenkis [15]). Let F be a family of measurable functions
f : Z → {0, 1} over a space Z. Denote by EZf the empirical average of f over a subset

Z ⊂ Z. Let αn =
√

(4/n) ln(8S(F , 2n)/δ). If Z is an i.i.d. sample of size n from a fixed
distribution over Z, then, with probability at least 1− δ, for all f ∈ F :

−min
(

αn

√

EZf, α2
n + αn

√

Ef
)

≤ Ef − EZf ≤ min
(

α2
n + αn

√

EZf, αn

√

Ef
)

.

2.2 Disagreement coefficient

We will bound the label complexity of our algorithm in terms of (a slight variation of) the
disagreement coefficient θ introduced in [12] for analyzing the label complexity of A2.

Definition 1. The disagreement metric ρ on H is defined by ρ(h, h′) = Prx∼DX
[h(x) 6=

h′(x)]. The disagreement coefficient θ = θ(D,H, ε) > 0 is

θ = sup

{

Prx∼DX
[∃h ∈ B(h∗, r) s.t. h(x) 6= h∗(x)]

r
: r ≥ ε + ν

}

where B(h, r) = {h′ ∈ H : ρ(h, h′) < r}, h∗ = arg infh∈H errD(h), and ν = errD(h∗).

The quantity θ bounds the rate at which the disagreement mass of the ball B(h∗, r) – the
probability mass of points on which hypotheses in B(h∗, r) disagree with h∗ – grows as a
function of the radius r. Clearly, θ ≤ 1/(ε + ν); furthermore, it is a constant bounded

1It has been noted that the Cohn-Atlas-Ladner scheme can easily be made tractable using a
reduction to supervised learning in the separable case [13, p. 68]. Although our algorithm is most
naturally seen as an extension of Cohn-Atlas-Ladner, a similar reduction to supervised learning (in
the agnostic setting) can be used for A2 [10].
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Algorithm 1
Input: stream (x1, x2, . . . , xm) i.i.d. from DX

Initially, S0 ← ∅ and T0 ← ∅.
For n = 1, 2, . . . ,m:

1. For each ŷ ∈ {±1}, let hŷ ← LEARNH(Sn−1 ∪ {(xn, ŷ)}, Tn−1).

2. If err(h−ŷ, Sn−1 ∪ Tn−1)− err(hŷ, Sn−1 ∪ Tn−1) > ∆n−1 for some ŷ ∈ {±1}
(or if no such h−ŷ is found)
then Sn ← Sn−1 ∪ {(xn, ŷ)} and Tn ← Tn−1.

3. Else request yn; Sn ← Sn−1 and Tn ← Tn−1 ∪ {(xn, yn)}.
Return hf = LEARNH(Sm, Tm).

Figure 1: The agnostic selective sampling algorithm. See (1) for how to set ∆n.

independently of 1/(ε + ν) in several cases previously considered in the literature [12]. For
example, if H is homogeneous linear separators and DX is the uniform distribution over the
unit sphere in R

d, then θ = Θ(
√

d).

3 Agnostic selective sampling

Here we state and analyze our general algorithm for agnostic active learning. The main
techniques employed by the algorithm are reductions to a supervised learning task and
generalization bounds applied to differences of empirical errors.

3.1 A general algorithm for agnostic active learning

Figure 1 states our algorithm in full generality. The input is a stream of m unlabeled
examples drawn i.i.d from DX ; for the time being, m can be thought of as Õ((d/ε)(1+ν/ε))
where ε is the accuracy parameter.2

For S, T ⊂ X × {±1}, let LEARNH(S, T ) denote a supervised learner that returns a hy-
pothesis h ∈ H consistent with S, and with minimum error on T . Algorithm 1 maintains
two sets of labeled examples, S and T , each of which is initially empty. Upon receiving xn,
it learns two hypotheses, hŷ = LEARNH(S ∪{(xn, ŷ)}, T ) for ŷ ∈ {±1}, and then compares
their empirical errors on S ∪ T . If the difference is large enough3, it is possible to infer
how h∗ labels xn (as we show in Lemma 3). In this case, the algorithm adds xn, with this
inferred label, to S. Otherwise, the algorithm requests the label yn and adds (xn, yn) to T .
Thus, S contains examples with inferred labels consistent with h∗, and T contains examples
with their requested labels. Because h∗ might err on some examples in T , we just insist
that LEARNH find a hypothesis with minimal error on T . Meanwhile, by construction, h∗

is consistent with S, so we require LEARNH to only consider hypotheses consistent with S.

3.2 Bounds for error differences

We still need to specify ∆n, the threshold value for error differences that determines whether
the algorithm requests a label or not. Intuitively, ∆n should reflect how closely empirical
errors on a sample approximate true errors on the distribution D.

The setting of ∆n can only depend on observable quantities, so we first clarify the distinction
between empirical errors on Sn ∪ Tn and those with respect to the true (hidden) labels.

Definition 2. Let Sn and Tn be as defined in Algorithm 1. Let S!
n be the set of labeled

examples identical to those in Sn, except with the true hidden labels swapped in. Thus, for
example, S!

n ∪ Tn is an i.i.d. sample from D of size n. Finally, let

err!n(h) = err(h, S!
n ∪ Tn) and errn(h) = err(h, Sn ∪ Tn).

2The Õ notation suppresses log 1/δ and terms polylogarithmic in those that appear.
3If LEARNH cannot find a hypothesis consistent with S ∪ {(xn, y)} for some y, then it is clear

that h∗(x) = −y. In this case, we simply add (xn,−y) to S, regardless of ∆n−1.
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It is straightforward to apply Lemma 1 to empirical errors on S!
n ∪ Tn, i.e. to err!n(h), but

we cannot use such bounds algorithmically: we do not request the true labels for points in
Sn and thus cannot reliably compute err!n(h). What we can compute are error differences
err!n(h)− err!n(h′) for pairs of hypotheses (h, h′) that agree on (and make the same mistakes
on) Sn, since for such pairs, we have err!n(h)− err!n(h′) = errn(h)− errn(h′).

Definition 3. For a pair (h, h′) ∈ H×H, define g+
h,h′(x, y) = 1l[h(x) 6= y ∧ h′(x) = y] and

g−h,h′(x, y) = 1l[h(x) = y ∧ h′(x) 6= y].

With this notation, we have err(h,Z)− err(h′, Z) = EZ [g+
h,h′ ]− EZ [g−h,h′ ] for any Z ⊂ X ×

{±1}. Now, applying Lemma 1 to G = {g+
h,h′ : (h, h′) ∈ H×H} = {g−h,h′ : (h, h′) ∈ H×H},

and noting that S(G, n) ≤ S(H, n)2, gives the following lemma.

Lemma 2. Let αn =
√

(4/n) ln(8S(H, 2n)2/δ). With probability at least 1 − δ over an
i.i.d. sample Z of size n from D, we have for all (h, h′) ∈ H ×H,

err(h,Z)− err(h′, Z) ≤ errD(h)− errD(h′) + α2
n + αn

(
√

EZ [g+
h,h′ ] +

√

EZ [g−h,h′ ]
)

.

Corollary 1. Let βn =
√

(4/n) ln(8(n2 + n)S(H, 2n)2/δ). Then, with probability at least
1− δ, for all n ≥ 1 and all (h, h′) ∈ H ×H consistent with Sn, we have

errn(h)− errn(h′) ≤ errD(h)− errD(h′) + β2
n + βn(

√

errn(h) +
√

errn(h′)).

Proof. Applying Lemma 2 to each S!
n ∪ Tn (replacing δ with δ/(n2 + n)) and a union

bound implies, with probability at least 1− δ, the bounds in Lemma 2 hold simultaneously
for all n ≥ 1 and all (h, h′) ∈ H2 with S!

n ∪ Tn in place of Z. The corollary follows
because err!n(h) − err!n(h′) = errn(h) − errn(h′); and because g+

h,h′(x, y) ≤ 1l[h(x) 6= y] and

g−h,h′(x, y) ≤ 1l[h′(x) 6= y] for (h, h′) consistent with Sn, so ES!
n
∪Tn

[g+
h,h′ ] ≤ errn(h) and

ES!
n
∪Tn

[g−h,h′ ] ≤ errn(h′).

Corollary 1 implies that we can effectively apply the normalized uniform convergence bounds
from Lemma 1 to empirical error differences on Sn ∪ Tn, even though Sn ∪ Tn is not an
i.i.d. sample from D. In light of this, we use the following setting of ∆n:

∆n := β2
n + βn

(

√

errn(h+1) +
√

errn(h−1)
)

(1)

where βn =
√

(4/n) ln(8(n2 + n)S(H, 2n)2/δ) = Õ(
√

d log n/n) as per Corollary 1.

3.3 Correctness and fall-back analysis

We now justify our setting of ∆n with a correctness proof and fall-back guarantee.

Lemma 3. With probability at least 1 − δ, the hypothesis h∗ = arg infh∈H errD(h) is con-
sistent with Sn for all n ≥ 0 in Algorithm 1.

Proof. Apply the bounds in Corollary 1 and proceed by induction on n. The base case is
trivial since S0 = ∅. Now assume h∗ is consistent with Sn. Suppose upon receiving xn+1,
we discover errn(h+1) − errn(h−1) > ∆n. We will show that h∗(xn+1) = −1 (assume both
h+1 and h−1 exist, since it is clear h∗(xn+1) = −1 if h+1 does not exist). Suppose for the
sake of contradiction that h∗(xn+1) = +1. We know the that errn(h∗) ≥ errn(h+1) (by

inductive hypothesis) and errn(h+1)− errn(h−1) > β2
n + βn(

√

errn(h+1) +
√

errn(h−1)). In
particular, errn(h+1) > β2

n. Therefore,

errn(h∗)− errn(h−1) = (errn(h∗)− errn(h+1)) + (errn(h+1)− errn(h−1))

>
√

errn(h+1)(
√

errn(h∗)−
√

errn(h+1)) + β2
n + βn(

√

errn(h+1) +
√

errn(h−1))

> βn(
√

errn(h∗)−
√

errn(h+1)) + β2
n + βn(

√

errn(h+1) +
√

errn(h−1))

= β2
n + βn(

√

errn(h∗) +
√

errn(h−1)).

Now Corollary 1 implies that errD(h∗) > errD(h−1), a contradiction.

5



Theorem 1. Let ν = infh∈H errD(h) and d = vcdim(H). There exists a constant c > 0
such that the following holds. If Algorithm 1 is given a stream of m unlabeled examples,
then with probability at least 1 − δ, the algorithm returns a hypothesis with error at most

ν + c · ((1/m)(d log m + log(1/δ)) +
√

(ν/m)(d log m + log(1/δ))).

Proof. Lemma 3 implies that h∗ is consistent with Sm with probability at least 1− δ. Using
the same bounds from Corollary 1 (already applied in Lemma 3) on h∗ and hf together

with the fact errm(hf ) ≤ errm(h∗), we have errD(hf ) ≤ ν + β2
m + βm

√
ν + βm

√

errD(hf ),
which in turn implies errD(hf ) ≤ ν + 3β2

m + 2βm
√

ν.

So, Algorithm 1 returns a hypothesis with error at most ν + ε when m = Õ((d/ε)(1 +
ν/ε)); this is (asymptotically) the usual sample complexity of supervised learning. Since the

algorithm requests at most m labels, its label complexity is always at most Õ((d/ε)(1+ν/ε)).

3.4 Label complexity analysis

We can also bound the label complexity of our algorithm in terms of the disagreement
coefficient θ. This yields tighter bounds when θ is bounded independently of 1/(ε+ ν). The
key to deriving our label complexity bounds based on θ is noting that the probability of
requesting the (n + 1)th label is intimately related to θ and ∆n (see [10] for the complete
proof).

Lemma 4. There exists a constant c > 0 such that, with probability at least 1− 2δ, for all
n ≥ 1, the following holds. Let h∗(xn+1) = ŷ where h∗ = arg infh∈H errD(h). Then, the
probability that Algorithm 1 requests the label yn+1 is Prxn+1∼DX

[Request yn+1] ≤ c · θ · (ν +
β2

n), where θ = θ(D,H, 3β2
m + 2βm

√
ν) is the disagreement coefficient, ν = errD(h∗), and

βn = Õ(
√

d log n/n) is as defined in Corollary 1.

Now we give our main label complexity bound for agnostic active learning.

Theorem 2. Let m be the number of unlabeled data given to Algorithm 1, d = vcdim(H),
ν = infh∈H errD(h), βm as defined in Corollary 1, and θ = θ(D,H, 3β2

m + 2βm
√

ν). There
exists a constant c1 > 0 such that for any c2 ≥ 1, with probability at least 1− 2δ:

1. If ν ≤ (c2 − 1)β2
m, Algorithm 1 returns a hypothesis with error as bounded in The-

orem 1 and the expected number of labels requested is at most

1 + c1c2θ ·
(

d log2 m + log
1

δ
log m

)

.

2. Else, the same holds except the expected number of labels requested is at most

1 + c1θ ·
(

νm + d log2 m + log
1

δ
log m

)

.

Furthermore, if L is the expected number of labels requested as per above, then with probability

at least 1− δ′, the algorithm requests no more than L +
√

3L log(1/δ′) labels.

Proof. Follows from Lemma 4 and a Chernoff bound for the Poisson trials 1l[Request yn].

With the substitution ε = 3β2
m + 2βm

√
ν as per Theorem 1, Theorem 2 entails that for any

hypothesis class and data distribution for which the disagreement coefficient θ = θ(D,H, ε)
is bounded independently of 1/(ε + ν) (see [12] for some examples), Algorithm 1 only needs

Õ(θd log2(1/ε)) labels to achieve error ε ≈ ν and Õ(θd(log2(1/ε)+(ν/ε)2)) labels to achieve
error ε≪ ν. The latter matches the dependence on ν/ε in the Ω((ν/ε)2) lower bound [11].

The linear dependence on θ improves on the quadratic dependence required by A2 [12]4. For
an illustrative consequence of this, suppose DX is the uniform distribution on the sphere

4It may be possible to reduce A2’s quadratic dependence to a linear dependence by using nor-
malized bounds, as we do here.
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Figure 2: (a & b) Labeling rate plots. The plots show the number of labels requested
(vertical axis) versus the total number of points seen (labeled + unlabeled, horizontal axis)
using Algorithm 1. (a) H = thresholds: under random misclassification noise with ν =
0 (solid), 0.1 (dashed), 0.2 (dot-dashed); under the boundary noise model with ν = 0.1
(lower dotted), 0.2 (upper dotted). (b) H = intervals: under random misclassification with
(p+, ν) = (0.2, 0.0) (solid), (0.1, 0.0) (dashed), (0.2, 0.1) (dot-dashed), (0.1, 0.1) (dotted). (c
& d) Locations of label requests. (c) H = intervals, h∗ = [0.4, 0.6]. The top histogram
shows the locations of first 400 label requests (the x-axis is the unit interval); the bottom
histogram is for all (2141) label requests. (d) H = boxes, h∗ = [0.15, 0.85]2. The first 200
requests occurred at the ×s, the next 200 at the ▽s, and the final 109 at the ©s.

in R
d and H is homogeneous linear separators; in this case, θ = Θ(

√
d). Then the label

complexity of A2 depends at least quadratically on the dimension, whereas the corresponding
dependence for our algorithm is d3/2.

4 Experiments

We implemented Algorithm 1 in a few simple cases to experimentally demonstrate the
label complexity improvements. In each case, the data distribution DX was uniform over
[0, 1]; the stream length was m = 10000, and each experiment was repeated 20 times with
different random seeds. Our first experiment studied linear thresholds on the line. The
target hypothesis was fixed to be h∗(x) = sign(x− 0.5). For this hypothesis class, we used
two different noise models, each of which ensured infh∈H errD(h) = errD(h∗) = ν for a pre-
specified ν ∈ [0, 1]. The first model was random misclassification: for each point x ∼ DX ,
we independently labeled it h∗(x) with probability 1− ν and −h∗(x) with probability ν. In
the second model (also used in [7]), for each point x ∼ DX , we independently labeled it +1
with probability (x−0.5)/(4ν)+0.5 and −1 otherwise, thus concentrating the noise near the
boundary. Our second experiment studied intervals on the line. Here, we only used random
misclassification, but we varied the target interval length p+ = Prx∼DX

[h∗(x) = +1].

The results show that the number of labels requested by Algorithm 1 was exponentially
smaller than the total number of data seen (m) under the first noise model, and was poly-
nomially smaller under the second noise model (see Figure 2 (a & b); we verified the polyno-
mial vs. exponential distinction on separate log-log scale plots). In the case of intervals, we
observe an initial phase (of duration roughly ∝ 1/p+) in which every label is requested, fol-
lowed by a more efficient phase, confirming the known active-learnability of this class [4,12].
These improvements show that our algorithm needed significantly fewer labels to achieve
the same error as a standard supervised algorithm that uses labels for all points seen.

As a sanity check, we examined the locations of data for which Algorithm 1 requested a
label. We looked at two particular runs of the algorithm: the first was with H = intervals,
p+ = 0.2, m = 10000, and ν = 0.1; the second was with H = boxes (d = 2), p+ = 0.49,
m = 1000, and ν = 0.01. In each case, the data distribution was uniform over [0, 1]d, and
the noise model was random misclassification. Figure 2 (c & d) shows that, early on, labels
were requested everywhere. But as the algorithm progressed, label requests concentrated
near the boundary of the target hypothesis.
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5 Conclusion and future work

We have presented a simple and natural approach to agnostic active learning. Our extension
of the selective sampling scheme of Cohn, et al. [1]

1. simplifies the maintenance of the region of uncertainty with a reduction to super-
vised learning, and

2. guards against noise with a subtle algorithmic application of generalization bounds.

Our algorithm relies on a threshold parameter ∆n for comparing empirical errors. We
prescribe a very simple and natural choice for ∆n – a normalized generalization bound from
supervised learning – but one could hope for a more clever or aggressive choice, akin to
those in [6] for linear separators.

Finding consistent hypotheses when data is separable is often a simple task. In such cases,
reduction-based active learning algorithms can be relatively efficient (answering some ques-
tions posed in [16]). On the other hand, agnostic learning suffers from severe computational
intractability for many hypothesis classes (e.g. [17]), and of course, agnostic active learning
is at least as hard in the worst case. Our reduction is relatively benign in that the learning
problems created are only over samples from the original distribution, so we do not cre-
ate pathologically hard instances (like those arising from hardness reductions) unless they
are inherent in the data. Nevertheless, an important research direction is to develop algo-
rithms that only require solving tractable (e.g. convex) optimization problems. A similar
reduction-based scheme may be possible.
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[11] M. Kääriäinen. Active learning in the non-realizable case. In ALT, 2006.

[12] S. Hanneke. A bound on the label complexity of agnostic active learning. In ICML, 2007.

[13] C. Monteleoni. Learning with online constraints: shifting concepts and active learning. PhD
Thesis, MIT Computer Science and Artificial Intelligence Laboratory, 2006.

[14] O. Bousquet, S. Boucheron, and G. Lugosi. Introduction to statistical learning theory. Lecture
Notes in Artificial Intelligence, 3176:169–207, 2004.

[15] V. Vapnik and A. Chervonenkis. On the uniform convergence of relative frequencies of events
to their probabilities. Theory of Probability and its Applications, 16:264–280, 1971.

[16] C. Monteleoni. Efficient algorithms for general active learning. In COLT. Open problem, 2006.

[17] V. Guruswami and P. Raghavendra. Hardness of learning halfspaces with noise. In FOCS,
2006.

8


