
A Proof of Theorem 1

The proof of Theorem 1 makes use of the following simple inequality which is straight-forward to
prove6. For any hypothesesh, h′ ∈ H,

|ǫS(h, h′)− ǫT (h, h′)| ≤
1

2
dH∆H(DS ,DT ) .

The proof also relies heavily on the triangle inequality forclassification error [3, 8] which implies
that for any labeling functionsf1, f2, andf3, ǫS(f1, f2) ≤ ǫS(f1, f3) + ǫS(f2, f3). Similarly, for
the target domain, for anyf1, f2, andf3, ǫT (f1, f2) ≤ ǫT (f1, f3) + ǫT (f2, f3).

ǫT (h) ≤ ǫT (h∗) + ǫT (h, h∗) ≤ ǫT (h∗) + ǫS(h, h∗) + |ǫT (h, h∗)− ǫS(h, h∗)|

≤ ǫT (h∗) + ǫS(h, h∗) +
1

2
dH∆H(DS ,DT )

≤ ǫT (h∗) + ǫS(h) + ǫS(h∗) +
1

2
dH∆H(DS ,DT )

= ǫS(h) +
1

2
dH∆H(DS ,DT ) + λ

≤ ǫS(h) +
1

2
d̂H∆H(US ,UT ) + 4

√

2d log(2m′) + log(4
δ )

m′
+ λ

The last step in the proof is an application of Theorem 3.4 of Ben-David, Gehrke, and Kifer [4],
together with the observation that since we can represent everyg ∈ H∆H as a linear threshold net-
work of depth 2 with 2 hidden units, the VC dimension ofH∆H is at most twice the VC dimension
of H [1].

B Proof of the main theorem

B.1 Proof of Lemma 1

This proof again relies heavily on the triangle inequality for classification error.

|ǫα(h)− ǫT (h)| = (1− α)|ǫS(h)− ǫT (h)|

≤ (1− α) [|ǫS(h)− ǫS(h, h∗)|+ |ǫS(h, h∗)− ǫT (h, h∗)|+ |ǫT (h, h∗)− ǫT (h)|]

≤ (1− α) [ǫS(h∗) + |ǫS(h, h∗)− ǫT (h, h∗)|+ ǫT (h∗)]

≤ (1− α)(
1

2
dH∆H(DS ,DT ) + λ)

B.2 Proof of Lemma 2

We begin by restating Hoeffding’s inequality.

Hoeffding’s inequality
If X1,X2, . . . ,Xn are independent andai ≤ Xi ≤ bi(i = 1, 2, . . . , n), then forǫ > 0

Pr
[

|X̄ − E[X̄]| ≥ ǫ
]

≤ 2e−2n2ǫ2/
Pn

i=1
(bi−ai)

2

,

whereX̄ = (X1 + · · ·+ Xn)/n.

Let X1, . . . ,Xβm be random variables that take on the values(α/β)|h(x) − fT (x)| for the βm
instancesx ∈ ST . Similarly, let Xβm+1, . . . ,Xm be random variables that take on the values

6Ben-David et al. [3] incorrectly stated this inequality in the original proof ofTheorem 1. They wrote it
usingdH instead of1

2
dH∆H.
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(1−α)/(1−β)|h(x)−fS(x)| for the(1−β)m instancesx ∈ SS . Note thatX1, . . . ,Xβm ∈ [0, α/β]
andXβm+1, . . . ,Xm ∈ [0, (1− α)/(1− β)]. Then

ǫ̂α(h) = αǫ̂T (h) + (1− α)ǫ̂S(h)

= α
1

βm

∑

x∈ST

|h(x)− fT (x)|+ (1− α)
1

(1− β)m

∑

x∈SS

|h(x)− fS(x)| =
1

m

m
∑

i=1

Xi.

Furthermore, by linearity of expectations

E[ǫ̂α(h)] =
1

m

(

βm
α

β
ǫT (h) + (1− β)m

1− α

1− β
ǫS(h))

)

= αǫT (h) + (1− α)ǫS(h) = ǫα(h).

So by Hoeffding’s inequality the following holds for everyh.

Pr [|ǫ̂α(h)− ǫα(h)| ≥ ǫ] ≤ 2 exp

(

−2m2ǫ2
∑m

i=1 range2(Xi)

)

= 2 exp







−2m2ǫ2

βm
(

α
β

)2

+ (1− β)m
(

1−α
1−β

)2







= 2 exp

(

−2mǫ2

α2

β + (1−α)2

1−β

)

.

The remainder of the proof for hypothesis classes of finite VCdimension follows a standard argu-
ment. In particular, the reduction to a finite hypothesis class using the growth function does not
change [16, 1]. This, combined with the union bound, gives usthe probability that there existsany
hypothesish ∈ H, |ǫ̂α(h)− ǫα(h)| ≥ ǫ. Substitutingδ for the probability and solving gives us

ǫ =

√

(

α2

β
+

(1− α)2

1− β

)

d log(2m)− log δ

2m
.

B.3 Proof of Theorem 2

The proof follows the standard set of steps for proving learning bounds [1], using Lemma 1 to
bound the difference between target and weighted errors andLemma 2 for the uniform convergence
of empirical and true weighted errors. Below we use L1, L2, and Thm1 to indicate that a line of the
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proof follows by application of Lemma 1, Lemma 2, or Theorem 1respectively.

ǫT (ĥ) ≤ ǫα(ĥ) + (1− α)

(

1

2
dH∆H(DS ,DT ) + λ

)

(L1)

≤ ǫ̂α(ĥ) +

√

α2

β
+

(1− α)2

1− β

√

d log(2m)− log δ

2m
+ (1− α)

(

1

2
dH∆H(DS ,DT ) + λ

)

(L2)

≤ ǫ̂α(h∗T ) +

√

α2

β
+

(1− α)2

1− β

√

d log(2m)− log δ

2m
+ (1− α)

(

1

2
dH∆H(DS ,DT ) + λ

)

≤ ǫα(h∗T )+2

√

α2

β
+

(1− α)2

1− β

√

d log(2m)− log δ

2m
+ (1− α)

(

1

2
dH∆H(DS ,DT )+λ

)

(L2)

≤ǫT (h∗T )+2

√

α2

β
+

(1− α)2

1− β

√

d log(2m)− log δ

2m
+2(1− α)

(

1

2
dH∆H(DS ,DT )+λ

)

(L1)

≤ ǫT (h∗T ) + 2

√

α2

β
+

(1− α)2

1− β

√

d log(2m)− log δ

2m
+

2(1− α)





1

2
dH∆H(US ,UT ) + 4

√

2d log(2m′) + log(4
δ )

m′
+ λ



 (Thm 1)

C Proof of Theorem 3

Lemma 3 Leth be a hypothesis in classH. Then|ǫα(h)− ǫT (h)| ≤ dH∆H(Dα,DT ) + γα .

Proof:

|ǫα(h)− ǫT (h)| ≤ [|ǫα(h)− ǫα(h, h∗)|+ |ǫα(h, h∗)− ǫT (h, h∗)|+ |ǫT (h, h∗)− ǫT (h)|]

≤ [ǫα(h∗) + |ǫα(h, h∗)− ǫT (h, h∗)|+ ǫT (h∗)]

≤ (
1

2
dH∆H(Dα,DT ) + γα)

Lemma 4 LetH be a hypothesis space of VC-dimensiond. If a random labeled sample of sizem is
generated by drawingβjm points fromDj , and labeling them according tofj , then with probability
at least1− δ (over the choice of the samples), for everyh ∈ H:

|ǫ̂α(h)− ǫα(h)| <

√

√

√

√

∑

j

α2
j

βj

√

d log(2m)− log δ

2m

Proof: Because of its similarity to the proof of Lemma 2 (in AppendixB.2), we will omit some
details of this proof. LetX1, . . . ,Xβjm be random variables that take on the values(αj/βj)|h(x)−
fj(x)| for theβjm instancesx ∈ Sj . Note thatX1, . . . ,Xβjm ∈ [0, αj/βj ]. Then

ǫ̂α(h) =
N
∑

j=1

αj ǫ̂j(h) =
N
∑

j=1

αj
1

βjm

∑

x∈Sj

|h(x)− fj(x)| =
1

m

m
∑

i=1

Xi.

By linearity of expectations again, we haveE[ǫ̂α(h)] = ǫα(h).
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By Hoeffding’s inequality the following holds for everyh.

Pr [|ǫ̂α(h)− ǫα(h)| ≥ ǫ] ≤ 2 exp

(

−2m2ǫ2
∑m

i=1 range2(Xi)

)

= 2 exp





−2mǫ2

∑

j

α2

j

βj



 .

The remainder of the proof is identical to the proof of Lemma 2.

The proof of Theorem 3 combines Lemmas 3 and 4, following an identical argument to the proof of
Theorem 2.
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