A Proof of Theorem 1

The proof of Theorem 1 makes use of the following simple iraditpiwhich is straight-forward to
prove®. For any hypothesds, b’ € H,

1
les(h,h') —er(h,h)| < idHAH(DS,DT) :

The proof also relies heavily on the triangle inequality dassification error [3, 8] which implies
that for any labeling functiong,, fo, andfs, es(f1, f2) < es(f1, f3) + €s(f2, f3). Similarly, for
the target domain, for ang, f2, andfs, er(f1, f2) < er(f1, f3) + er(f2, f3).
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The last step in the proof is an application of Theorem 3.4 efi-Bavid, Gehrke, and Kifer [4],
together with the observation that since we can represeny e« HAH as a linear threshold net-
work of depth 2 with 2 hidden units, the VC dimensiorfAH is at most twice the VC dimension
of H [1]. [

B Proof of the main theorem

B.1 Proof of Lemmal

This proof again relies heavily on the triangle inequaldy ¢lassification error.

lea(h) = er(h)] = (1 - a)les(h) — ex(h)|
< (1 a)[les(h) — es(h,h)| + [es (b h*) = ex(h, h*)| + lex (b h*) = ex ()]
< (1= a) [es(h") + les(h, h*) — ex(h, h*)] + ex (h*)]

< (1 — a)(%dHAH('DSa’DT) + /\)

B.2 Proof of Lemma 2

We begin by restating Hoeffding’s inequality.

Hoeffding's inequality
If X1, Xo,...,X, areindependentand < X; <b;(i =1,2,...,n), then fore > 0

Pr [|X — E[X]| > ¢] < 2720/ Zina(bizan)?,
whereX = (X1 +--- + X,,)/n.

Let X1,..., Xa,, be random variables that take on the valfegs)|h(z) — fr(x)| for the fm
instancesr € Sr. Similarly, let Xg,,+1,. .., X, be random variables that take on the values

5Ben-David et al. [3] incorrectly stated this inequality in the original proofb&orem 1. They wrote it
usingdy instead of} dran.



(1—a)/(1=P)|h(z)— fs(z)| for the(1—F)m instances: € Sg. Note thatXy, ..., Xz, € [0, /0]
andXgmi1,- .-, Xm € [0, (1 — a)/(1 — ()]. Then

Furthermore, by linearity of expectations

Elen(h)] = <ﬁmaeT(h) (1= Byme—?

m B 1-3
= aer(h) + (1 — a)es(h) = ea(h).

So by Hoeffding's inequality the following holds for evehy

. —2m?e?
Pr Hea(h) - ea(h>| > 6] < 2exp (Zm rangeQ(X‘))
i=1 ?

—2m?2e2

The remainder of the proof for hypothesis classes of finited#@ension follows a standard argu-
ment. In particular, the reduction to a finite hypothesis€lasing the growth function does not
change [16, 1]. This, combined with the union bound, givethagprobability that there existny
hypothesish € H, |é,(h) — e (h)| > €. Substituting’ for the probability and solving gives us

B a? (1—a«)?\ dlog(2m) —logé
- \/(ﬂ Ty ) am

B.3 Proof of Theorem 2

The proof follows the standard set of steps for proving legyrbounds [1], using Lemma 1 to
bound the difference between target and weighted errort@mana 2 for the uniform convergence
of empirical and true weighted errors. Below we use L1, L2} ®hm1 to indicate that a line of the
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proof follows by application of Lemma 1, Lemma 2, or Theorenedpectively.

(h h 1—a ( dHAH(DS7DT)+)\> (L1)

(1-« dlo 2m —logé
<é \/—1\/ 8 8% L (1-a) ( dran(Ds, Dr) + A) (L2)
A (1% o 1-« dlog(2m) — log § 1
< €a(hT) + \/6—’_—1\/ g o g + (1 - Oé) <2dHAH(DSaDT) + A)

(1-— dlog(2 —logé 1
a Og m o8 + (1 — Oé) <2dHAH(D5,DT)—|—)\> (L2)

/ (1-a) dlog(2m) — log ¢ 1
<er hT 1= \/ g ) 2(1 — a) (QdHAH(DSHDT)JF)\) (L1)

<6Ct h’T +2

(1- dlog(2 log 0
<er(hy)+2 ﬁ+ @) \/ og( mn)l %80 4
/ 4
2(1-a) (;dHAH(US»UT) + 4\/2dlog(2mm)/+ Log () + A) (Thm 1)
[
C Proof of Theorem 3
Lemma3 Leth be a hypothesis in clags. Then|eq (h) — er(h)| < dyar (Do, D) + Yo -
Proof:
lea(h) — er(h)| < [lea(h) = €alh, h¥)| + |€a(h, h*) — ex(h, h")| + |ex(h, h") — er ()]
< [ea(h”) + |ea(h, h*) — ex(h,h")| + er(h")]
S (§dHA'H(Da7DT) + ch)
[

Lemma4 LetH be a hypothesis space of VC-dimensiotf a random labeled sample of sizeis
generated by drawing;m points fromD;, and labeling them according tf;, then with probability
at leastl — ¢ (over the choice of the samples), for everg H:

léa(h) —ea(h)| < @\/dlog@gg— log §

Proof: Because of its similarity to the proof of Lemma 2 (in Appen@&i2), we will omit some
details of this proof. LeX, ..., Xz, be random variables that take on the val(es/ 3;) |h(x) —
[j(x)| for the 8;m instances: € S;. Note thatX,, ..., Xg,, € [0,a;/08;]. Then

N
B =S aé(h) zaj S e =3 X
j=1

TES i=1

By linearity of expectations again, we haf#é, (h)] = eq (h).
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By Hoeffding’s inequality the following holds for every.

—2m?2e?
Pr[léa(h) — €a(h)| > €] < 2exp <Zm1 r2ange2(Xi)>

The remainder of the proof is identical to the proof of Lemma 2 [ |

The proof of Theorem 3 combines Lemmas 3 and 4, following antidal argument to the proof of
Theorem 2.
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