On Ranking in Survival Analysis: Bounds on the
Concordance Index

Vikas C. Raykar, Harald Steck, Balaji Krishnapuram
CAD and Knowledge Solutions (IKM CKS), Siemens Medical Solutions Inc., Malvern, USA
{vikas .raykar,harald.steck,balaji. krishnapuram}@siemens .com

Cary Dehing-Oberije, Philippe Lambin
Maastro Clinic, University Hospital Maastricht, University Maastricht, GROW, The Netherlands
{cary.dehing,philippe.lambin}@maastro.nl

Abstract

In this paper, we show that classical survival analysis involving censored data
can naturally be cast as a ranking problem. The concordance index (CI), which
quantifies the quality of rankings, is the standard performance measure for model
assessment in survival analysis. In contrast, the standard approach to learning the
popular proportional hazard (PH) model is based on Cox’s partial likelihood. We
devise two bounds on Cl-one of which emerges directly from the properties of
PH models—and optimize them directly. Our experimental results suggest that all
three methods perform about equally well, with our new approach giving slightly
better results. We also explain why a method designed to maximize the Cox’s
partial likelihood also ends up (approximately) maximizing the CI.

1 Introduction

Survival analysis is a well-established field in medical statistics concerned with analyzing/predicting
the time until the occurrence of an event of interest—e.g., death, onset of a disease, or failure of a
machine. It is applied not only in clinical research, but also in epidemiology, reliability engineering,
marketing, insurance, etc. The time between a well-defined starting point and the occurrence of the
event is called the survival time or failure time, measured in clock time or in another appropriate
scale, e.g., mileage of a car. Survival time data are not amenable to standard statistical methods
because of its two special features—(1) the continuous survival time often follows a skewed distribu-
tion, far from normal, and (2) a large portion of the data is censored (see Sec. 2). In this paper we
take a machine learning perspective and cast survival analysis as a ranking problem—where the task
is to rank the data points based on their survival times rather than to predict the actual survival times.
One of the most popular performance measures for assessing learned models in survival analysis is
the Concordance Index (CI), which is similar to the Wilcoxon-Mann-Whitney statistic [13, 10] used
in bi-partite ranking problems.

Given the CI as a performance measure, we develop approaches that learn models by directly opti-
mizing the CI. As optimization of the CI is computationally expensive, we focus on maximizing two
lower bounds on the CI, namely the log-sigmoid and the exponential bounds, which are described in
Sec. 4, 5, and 6. Interestingly, the log-sigmoid bound arises in a natural way from the Proportional
Hazard (PH) model, which is the standard model used in classical survival analysis, see Sec. 5.2.
Moreover, as the PH models are learned by optimizing Cox’s partial likelihood in classical survival
analysis, we show in Sec. 8 that maximizing this likelihood also ends up (approximately) maxi-
mizing the CI. Our experiments in Sec. 9 show that optimizing our two lower bounds and Cox’s
likelihood yields very similar results with respect to the CI, with the proposed lower bounds being
slightly better.



2 Survival analysis

Survival analysis has been extensively studied in the statistics community for decades, e.g., [4, 8].
A primary focus is to build statistical models for survival time 7" of individual ¢ of a population.

2.1 Censored data

A major problem is the fact that the period of observation C; can be censored for many individuals
1. For instance, a patient may move to a different town and thus be no longer available for a clinical
trial. Also at the end of the trial a lot of patients may actually survive. For such cases the exact
survival time may be longer than the observation period. Such data are referred to as right-censored,
and C7 is also called the censoring time. For such individuals, we only know that they survived for
at least C, i.e., our actual observation is 7; = min(T}*, C}).

Let z; € R? be the associated d-dimensional vector of covariates (explanatory variables) for the
i** individual. In clinical studies, the covariates typically include demographic variables, such as
age, gender, or race; diagnosis information like lab tests; or treatment information, e.g., dosage. An
important assumption generally made is that 77* and C* are independent conditional on z;, i.e., the
cause for censoring is independent of the survival time. With the indicator function §;, which equals
1 if failure is observed (1;" < C}) and 0 if data is censored (1} > C7), the available training data
can be summarized as D = {T},z;,5;}; for N patients. The objective is to learn a predictive
model for the survival time as a function of the covariates.

2.2 Failure time distributions

The failures times are typically modeled to follow a distribution, which absorbs both truly random
effects and causes unexplained by the (available) covariates. This distribution is characterized by the
survival function S(t) = Pr[T > t] for t > 0, which is the probability that the individual is still alive
at time ¢. A related function commonly used is the hazard function. If T has density function p, then
the hazard function is defined by \(¢) = limas—o Prt < T <t + At|T > t]/At = p(t)/S(t). The
hazard function measures the instantaneous rate of failure, and provides more insight into the failure
mechanisms. The function A(t) = fg Au)du is called the cumulative hazard function, and it holds

that S(t) = e~ [4].

2.3 Proportional hazard model

Proportional hazard (PH) models have become the standard for studying the effect of the covariates
on the survival time distributions, e.g., [8]. Specifically, the PH model assumes a multiplicative
effect of the covariates on the hazard function, i.e.,

At|z) = Mo(t)e” ' ®, (1)

where A\(t|z) is the hazard function of a person with covariates x; Ao(t) is the so-called baseline
hazard function (i.e., when © = 0), which is typically based on the exponential or the Weibull

distributions; w is a set of unknown regression parameters, and e * is the relative hazard function.
Equivalent formulations for the cumulative hazard function and the survival function include

e [e“’TT’ S Ao(t)dt} .

A(t|]}) = AO(t)eme, and S(t|$) — e_AO(t)e“’ x _ (2)

2.4 Cox’s partial likelihood

Cox noticed that a semi-parametric approach is sufficient for estimating the weights w in PH models
[2, 3], i.e., the baseline hazard function can remain completely unspecified. Only a parametric
assumption concerning the effect of the covariates on the hazard function is required. Parameter
estimates in the PH model are obtained by maximizing Cox’s partial likelihood (of the weights)
[2, 3]: e
JRIRE2
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Figure 1: Order graphs representing the ranking constraints. (a) No censored data and (b) with censored data.
The empty circle represents a censored point. The points are arranged in the increasing value of their survival
times with the lowest being at the bottom. (c) Two concave lower bounds on the 0-1 indicator function.

Each term in the product is the probability that the i*" individual failed at time 7} given that exactly
one failure has occurred at time 7; and all individuals for which T} > T are at risk of failing. Cox
and others have shown that this partial log-likelihood can be treated as an ordinary log-likelihood to
derive valid (partial) maximum likelihood estimates of w [2, 3].

The interesting properties of the Cox’s partial likelihood include: (1) due to its parametric form, it
can be optimized in a computationally efficient way; (2) it depends only on the ranks of the observed
survival times, cf. the inequality T; > T; in Eq. 3, rather than on their actual numerical values. We
outline this connection to the ranking of the times 7;—and hence the concordance index—in Sec. 8.

3 Ordering of Survival times

Casting survival analysis as ranking problem is an elegant way of dealing not only with the typically
skewed distributions of survival times, but also with the censoring of the data: Two subjects’ survival
times can be ordered not only if (1) both of them are uncensored but also if (2) the uncensored time
of one is smaller than the censored survival time of the other. This can be visualized by means of an
order graph G = (V, &), cf. also Fig. 1. The set of vertices V represents all the individuals, where
each filled vertex indicates an observed/uncensored survival time, while an empty circle denotes a
censored observation. Existence of an edge &;; implies that 7; < T}. An edge cannot originate
from a censored point.

3.1 Concordance index

For these reasons, the concordance index (CI) or c-index is one of the most commonly used per-
formance measures of survival models, e.g., [6]. It can be interpreted as the fraction of all pairs of
subjects whose predicted survival times are correctly ordered among all subjects that can actually be
ordered. In other words, it is the probability of concordance between the predicted and the observed
survival. It can be written as

1
«(D,G, ) = 5 D lio<sa)) @)
8ij

with the indicator function 1,<, = 1if a < b, and 0 otherwise; |£| denotes the number of edges in
the order graph. f(x;) is the predicted survival time for subject 7 by the model f. Equivalently, the
concordance index can also be written explicitly as

1
T Yo D Yeo<ia)- )
T’; uncensored T'; >T;

This index is a generalization of the Wilcoxon-Mann-Whitney statistics [13, 10] and thus of the
area under the ROC curve (AUC) to regression problems in that it can (1) be applied to continuous



output variables and (2) account for censoring of the data. Like for the AUC, ¢ = 1 indicates perfect
prediction accuracy and ¢ = 0.5 is as good as a random predictor.

3.2 Maximizing the CI—The Ranking Problem

Since we evaluate the predictive accuracy of a survival model in terms of the concordance index,
it is natural to formulate the learning problem to directly maximize the concordance index. Note
that, while the concordance index has been used widely to evaluate a learnt model, it is not generally
used as an objective function during training. As the concordance index is invariant to any monotone
transformation of the survival times, the model learnt by maximizing the c-index is actually a rank-
ing/scoring function. Our goal is to predict whether the survival time of one individual is larger than
the one of another individual. Very often the doctor would like to know whether a particular kind
of treatment results in an increase in the survival time and the exact absolute value of the survival
time is not important. In terms of ranking problems studied in machine learning this is an N-partite
ranking problem, where every data point is a class in itself. Formulating it as a ranking problem al-
lows us to naturally incorporate the censored data. Once we have formulated it as a ranking problem
we can use various ranking algorithms proposed in the machine learning literature [5, 7, 1, 12]. In
this paper we use the algorithm proposed by [12].

More formally, we would like to learn a ranking function f from a suitable function class F, such
that f(x;) > f(z;) implies that the survival time of patient ¢ is larger than the one of patient j. Given

the data D and the order graph G, the optimal ranking function is f = arg maxycr ¢(D,G, f). As
to prevent overfitting on the training data, regularization can be added to this equation, see Secs. 5
and 6. In many cases, sufficient regularization is also achieved by restricting the function class F,
e.g., it may contain only linear functions. For ease of exposition we will consider the family of linear
ranking functions ! in this paper: F = {f,,}, where for any z,w € R%, f, () = w'z.

4 Lower bounds on the CI

Maximizing the CI is a discrete optimization problem, which is computationally expensive. For
this reason, we resort to maximizing a differentiable and concave lower bound on the 0-1 indicator
function in the concordance index, cf. Egs. 4 and 5. In this paper we focus on the log-sigmoid lower
bound [12], cf. Sec. 5, and exponential lower bound, cf. Sec. 6, which are suitably scaled as to be
tight at the origin and also in the asymptotic limit of large positive values, see also Fig. 1(c). We will
also show how these bounds relate to the classical approaches in survival analysis: as it turns out,
for the family of linear ranking functions, these two approaches are closely related to the PH model
commonly used in survival analysis, cf. Sec. 5.2.

5 Log-sigmoid lower bound

The first subsection discusses the lower bound on the concordance index based on the log-sigmoid
function. The second subsection shows that this bound arises naturally when using proportional
hazard models.

5.1 Lower bound

The sigmoid function is defined as o (z) = 1/(1+e~*), While it is an approximation to the indicator
function, it is not a lower bound. In contrast, the scaled version of the log of the sigmoid function,
log [20(z)]/ log 2, is a lower bound on the indicator function (Fig. 1(c)), i.e.,

1.50 > 1+ (logo(z)/log 2). (6)

The log-sigmoid function is concave and asymptotically linear for large negative values, and may
hence be considered a differentiable approximation to the hinge loss, which is commonly used for

! Generalization to non-linear functions can be achieved easily by using kernels: the linear ranking function
class F is replaced by H, a reproducing kernel Hilbert space (RKHS). The ranking function then is of the form

f(x) = XN, a;k(z, x;) where k is the kernel of the RHKS .



training support vector machines. The lower bound on the concordance index (cf. Eq. 4) follows
immediately:

1 1 —~
ciaZumemzEgy+mme—nmmeQ& (7)

which can efficiently be maximized by gradient-based methods (cf. Sec 7). Given the linear ranking
function f,,(x) = w 'z, the bound ¢ s becomes

as(w) = % Z 1+ (logofw' (z; — x;)]/log 2). (8)
Eij

As to avoid overfitting, we penalize functions with a large norm w in the standard way, and obtain
the regularized version

. A s
CLSreg(w) = —§||’LUH2 + CLs(’w). (9)

5.2 Connection to the PH model

The concordance index can be interpreted as the probability of correct ranking (as defined by the
given order graph) given a function f. Its probabilistic version can thus be cast as a likelihood.
Under the assumption that each pair (4, ¢) is independent of any other pair, the log-likelihood reads

L(fu,D,G) =log [ [ Prlfu(@:) < fula;)|w]. (10)

Sij

As this independence assumption obviously does not hold among all pairs due to transitivity (even
though the individual samples ¢ are assumed i.i.d.), it provides a lower bound on the concordance
index.

While the probability of correct pairwise ordering, Pr[f., (z;) < fu(x;)|w], is often chosen to be
sigmoid in the ranking literature [1], we show in the following that the sigmoid function arises
naturally in the context of PH models. Let T(w'z) denote the survival time for the patient with
covariates x or relative log-hazard w " z. A larger hazard corresponds to a smaller survival time, cf.
Sec. 2. Hence

Prlfu(wi) < fulz))lw] = me%m>7wﬁwWAAmmmew>ﬂmmMﬁ

- /wﬂmwmmmw:/mfﬂmw§MMML
0 0

where p(t|z;) is the density function of T for patient ¢ with covariate x;, and S(t|x;) is the corre-

sponding survival function; S (t) = dS(t)/dt = —p(t). Using Eq. 2 of the PH model, we continue
the manipulations:

)
T X _Ag(t) eV Tiqew i /
Pr(fu (1) < fula;)w] — %w“/ 0 J a oyt
0

e’wTi’i T
ewTa:j + ewTjS = (xi - ‘TJ)] (11)
This derivation shows that the probability of correct pairwise ordering indeed follows the sigmoid
function. Assuming a prior Prjw] = N (w|0,A~!) for regularization, the optimal maximum a-
posteriori (MAP) estimator is of the form wyap = arg max L(w), where the posterior L(w) takes
the form of a penalized log-likelihood:

A
L(w) = —§Hw||2 + Zloga [wT(xj — xl)} . (12)
Eij

This expression is equivalent to (8) except for a few constants that are irrelevant for optimization
problem, which justifies our choice of regularization in Eq. 8.



6 Exponential lower bound

The exponential 1 — e~ 7 can serve as an alternative lower bound on the step indicator function (see
Fig. 1(c)). The concordance index can then be lower-bounded by

c > ézl_ef[f(rj)*f(ri)]z’\ﬁ (13)
51']

Analogous to the log-sigmoid bound, for the linear ranking function f,,(z) = w "z, the lower bound
cg simplifies to

~ 1 o
() = 77 Do L= 7, (14)
(Sij
and, penalizing functions with large norm w, the regularized version reads
~ A 1 —wT (2 —z,
Gy (w) = =l + 77 D1 — e T, (15)

7 Gradient based learning

In order to maximize the regularized concave surrogate we can use any gradient-based learning
technique. We use the Polak-Ribiere variant of nonlinear conjugate gradients (CG) algorithm [11].
The CG method only needs the gradient g(w) and does not require evaluation of the function. It also
avoids the need for computing the second derivatives. The convergence of CG is much faster than
that of the steepest descent. Using the fact that do(z)/dz = o(2)[1 —o(2)] and 1 — o(2) = o(—2),
the gradient of Eq. 9 (log-sigmoid bound) is given by V., Cisree(w) = —Aw — m e, (@i —

z;j)o [w! (z; — x;)], and the gradient of Eq. 15 (exponential bound) by V.,Cereg(w) = —Aw —

X, (s — e @),
8 Is Cox’s partial likelihood a lower bound on the CI ?

Our experimental results (Sec. 9) indicate that the Coxs method and our proposed methods showed
similar performance when assessed using the CI. While our proposed method was formulated to
explicitly maximize a lower bound on the concordance index, the Coxs method maximized the
partial likelihood. One suspects whether Coxs partial likelihood itself is a lower bound on the
concordance index. The argument presented below could give an indication as to why a method
which maximizes the partial likelihood also ends up (approximately) maximizing the concordance
index. We re-write the exponential bound on the CI for proportional hazard models from Sec. 6

/C\E(w) = % Z Z 1-— e—wT(m%—mj) =1—- % Z e—mezz[ Z emej]

T’; uncensored T >T; T; uncensored T;>T;

No ewTwi

1
- 11— = 1)z ], where z=—=—————¢€[0,1].  (16)
€] (N 2. > D o

o
T’; uncensored

Note that we have replaced T; > T; by T; > Tj;, assuming that there are no ties in the data, i.e., no
two survival times are identical, analogous to Cox’s partial likelihood approach (cf. Sec. 2.4). The
number of uncensored observations is denoted by N,. The Cox’s partial likelihood can be written in
terms of 2; as L(w) = [, yncensorea 2 = (%i) Nm» Where () geom denotes the geometric mean of
the z; with uncensored 7;. Using the inequality z; > min z; the concordance index can be bounded

as
N, 1
c>1— —— .
- |€| min z;

a7

This says maximizing min z; maximizes a lower bound on the concordance index. While this does
not say anything about the Cox’s partial likelihood it still gives a useful insight. Since maxz; = 1
(because z; = 1 for the largest uncensored 7;), maximizing min z; can be expected to approximately
maximize the geometric mean of z;, and hence the Cox’s partial likelihood.



Table 1: Summary of the five data sets used. N is the number of patients. d is the number of covariates used.
[ Dataset | N | d [ Missing [ Censored |

MAASTRO 285 [ 19 | 3.6% 30.5%
SUPPORT-1 477 | 26 | 14.9% 36.4%
SUPPORT-2 314 | 26 | 16.6% 43.0%
SUPPORT-4 149 | 26 | 22.0% 10.7%
MELANOMA | 191 | 4 0.0% 70.2%

9 Experiments

In this section we compare the performance of the two different lower bounds on the CI—the log-
sigmoid, exponential, and Cox’s partial likelihood—on five medical data sets.

9.1 Medical datasets

Table 1 summarizes the five data sets we used in our experiments. A substantial amount of data
is censored and also missing. The MAASTRO dataset concerns the survival time of non-small
cell lung cancer patients, which we analyzed as part of our collaboration. The other medical data
sets are publicly available: The SUPPORT dataset 2 is a random sample from Phases I and II of
the SUPPORT [9](Study to Understand Prognoses Preferences Outcomes and Risks of Treatment)
study. As suggested in [6] we split the dataset into three different datasets, each corresponding to a
different cause of death. The MELANOMA data ? is from a clinical study of skin cancer.

9.2 Evaluation procedure

For each data set, 70% of the examples were used for training and the remaining 30% as the hold-out
set for testing. We chose the optimal value of regularization parameter A (cf. Eqs. 9 and 15) based
on five-fold cross validation on the training set. The tolerance for the conjugate gradient procedure
was set to 1073, The conjugate-gradient optimization procedure was initialized to the zero vector.
All the covariates were normalized to have zero mean and unit variance. As missing values were
not the focus of this paper, we used a simple imputation technique. For each missing value, we
imputed a sample drawn from a Gaussian distribution with its mean and variance estimated from the
available values of the other patients.

9.3 Results

The performance was evaluated in terms of the concordance index and the results are tabulated in
Table 2. We compare the following methods—(1) Cox’s partial likelihood method, and (2) the pro-
posed ranking methods with log-sigmoid and exponential lower bounds. The following observations
can be made—(1) The proposed linear ranking method performs slightly better than the Cox’s par-
tial likelihood method, but the difference does not appear significant. This agrees with our insights
that Cox’s partial likelihood may also end up maximizing the CI. (2) The exponential bound shows
slightly better performance than the log-sigmoid bound, which may indicate that the tightness of the
bound for positive z in Fig. 1(c) is more important than for negative z in our data sets. However the
difference is not significant.

10 Conclusions

In this paper, we outlined several approaches for maximizing the concordance index, the standard
performance measure in survival analysis when cast as a ranking problem. We showed that, for the
widely-used proportional hazard models, the log-sigmoid function arises as a natural lower bound
on the concordance index. We presented an approach for directly optimizing this lower bound in
a computationally efficient way. This optimization procedure can also be applied to other lower
bounds, like the exponential one. Apart from that, we showed that maximizing Cox’s partial like-
lihood can be understood as (approximately) maximizing a lower bound on the concordance index,
which explains the high CI-scores of proportional hazard models observed in practice. Optimization
of each of these three lower bounds results in about the same CI-score in our experiments, with our
new approach giving tentatively better results.

http://biostat.mc.vanderbilt.edu/twiki/bin/view/Main/DataSets.
Swww.stat .uni-muenchen.de/service/datenarchiv/melanoma/melanoma_e.html



Table 2: Concordance indices for the different methods and datasets. The mean and the standard deviation
are computed over a five fold cross-validation. The results are also shown for a fixed holdout set.

CI for CI for CI for
training set test set holdout
mean [+ std] | mean [= std] set

MAASTRO

Cox PH | 0.65[£0.02] | 0.57 [£0.09] 0.64
log-sigmoid | 0.69 [£0.02] | 0.60 [£0.06] 0.64
exponential | 0.69 [£0.02] | 0.64 [+0.08] 0.65
SUPPORT-1

Cox PH | 0.76 [£0.01] | 0.74 [£0.05] 0.79
log-sigmoid | 0.83 [£0.01] | 0.77 [0.04] 0.79
exponential | 0.83 [£0.01] | 0.79 [£0.02] 0.82
SUPPORT-2

Cox PH | 0.70 [£0.02] | 0.63 [£0.06] 0.69
log-sigmoid | 0.79 [£0.01] | 0.68 [£0.06] 0.65
exponential | 0.78 [£0.02] | 0.68 [+0.09] 0.70
SUPPORT-4

Cox PH | 0.78 [+0.01] | 0.68 [£+0.09] 0.64
log-sigmoid | 0.80 [£0.01] | 0.74 [£0.12] 0.71
exponential | 0.79 [£0.01] | 0.73 [+0.03] 0.71
MELANOMA

Cox PH | 0.63 [+0.03] | 0.62 [£0.09] 0.54
log-sigmoid | 0.76 [£0.02] | 0.70 [+0.10] 0.55
exponential | 0.76 [£0.01] | 0.65 [+0.11] 0.55
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