Theoretical Analysis of Heuristic Search Methods for
Online POMDPs

Stéphane Ross Joelle Pineau Brahim Chaib-draa
McGill University McGill University Laval University
Montréal, Qc, Canada Montréal, Qc, Canada Québec, Qc, Canada
srossl2@s.ncgill.ca jpineau@s.ncgill.ca chaib@ft.ulaval.ca
Abstract

Planning in partially observable environments remains a challenging problem, de-
spite significant recent advances in offline approximation techniques. A few on-
line methods have also been proposed recently, and proven to be remarkably scal-
able, but without the theoretical guarantees of their offline counterparts. Thus it
seems natural to try to unify offline and online techniques, preserving the theo-
retical properties of the former, and exploiting the scalability of the latter. In this
paper, we provide theoretical guarantees on an anytime algorithm for POMDPs
which aims to reduce the error made by approximate offline value iteration algo-
rithms through the use of an efficient online searching procedure. The algorithm
uses search heuristics based on an error analysis of lookahead search, to guide the
online search towards reachable beliefs with the most potential to reduce error. We
provide a general theorem showing that these search heuristics are admissible, and
lead to complete anéoptimal algorithms. This is, to the best of our knowledge,

the strongest theoretical result available for online POMDP solution methods. We
also provide empirical evidence showing that our approach is also practical, and
can find (provably) near-optimal solutions in reasonable time.

1 Introduction

Partially Observable Markov Decision Processes (POMDPSs) provide a powerful model for sequen-
tial decision making under state uncertainty. However exact solutions are intractable in most do-
mains featuring more than a few dozen actions and observations. Significant efforts have been
devoted to developing approximate offline algorithms for larger POMDPs [1, 2, 3, 4]. Most of these
methods compute a policy over the entire belief space. This is both an advantage and a liability.
On the one hand, it allows good generalization to unseen beliefs, and this has been key to solving
relatively large domains. Yet it makes these methods impractical for problems where the state space
is too large to enumerate. A number of compression techniques have been proposed, which han-
dle large state spaces by projecting into a sub-dimensional representation [5, 6]. Alternately online
methods are also available [7, 8, 9, 10, 11]. These achieve scalability by planning only at execution
time, thus allowing the agent to only consider belief states that can be reached over some (small)
finite planning horizon. However despite good empirical performance, both classes of approaches
lack theoretical guarantees on the approximation. So it would seem we are constrained to either
solving small to mid-size problems (near-)optimally, or solving large problems possibly badly.

This paper suggests otherwise, arguing that by combining offline and online techniques, we can
preserve the theoretical properties of the former, while exploiting the scalability of the latter. In
previous work [11], we introduced an anytime algorithm for POMDPs which aims to reduce the
error made by approximate offline value iteration algorithms through the use of an efficient online
searching procedure. The algorithm uses search heuristics based on an error analysis of lookahead
search, to guide the online search towards reachable beliefs with the most potential to reduce error. In



this paper, we derive formally the heuristics from our erramimization point of view and provide
theoretical results showing that these search heuristics are admissible, and lead to complete and
optimal algorithms. This is, to the best of our knowledge, the strongest theoretical result available
for online POMDP solution methods. Furthermore the approach works well with factored state
representations, thus further enhancing scalability, as suggested by earlier work [2]. We also provide
empirical evidence showing that our approach is computationally practical, and can find (provably)
near-optimal solutions within a smaller overall time than previous online methods.

2 Background: POMDP

A POMDRP is defined by a tupléS, A,Q, T, R,O,~) where S is the state spacel is the action
set, ) is the observation sefl’ : S x A x S — [0,1] is the state-to-state transition function,

R : S x A — Ris the reward functionQ : Q@ x A x S — [0, 1] is the observation function,
and~ is the discount factor. In a POMDP, the agent often does not know the current state with full
certainty, since observations provide only a partial indicator of state. To deal with this uncertainty,
the agent maintains a belief stétg), which expresses the probability that the agent is in each state
at a given time step. After each step, the belief shateupdated using Bayes rule. We denote the
belief update functiot’ = 7(b, a, 0), defined ad'(s’) = nO(o0,a,s") > .. T(s,a,s")b(s), where

7 is a normalization constant ensurihg, 4 v'(s) = 1.

ses

Solving a POMDP consists in finding an optimal poliey, : AS — A, which specifies the best
actiona to do in every belief staté, that maximizes the expectadturn (i.e., expected sum of
discounted rewards over the planning horizon) of the agent. We can find the optimal policy by
computing the optimal value of a belief state over the planning horizon. For the infinite horizon, the
optimal value function is defined 85" (b) = maxqca[R(b,a) + 7> cq P(o]b,a)V*(7(b,a,0))],

where R(b, a) represents the expected immediate reward of doing aetionbelief stateb and
P(olb, a) is the probability of observing after doing actior in belief stateh. This probability can

be computed according ®(o|b,a) = .. 4 O(0,a,5") > s T(s,a,s")b(s). We also denote the
value@* (b, a) of a particular actiom in belief state, as the return we will obtain if we performin

b and then follow the optimal policQ)* (b, a) = R(b,a) + v cq P(o|b,a)V*(7(b,a,0)). Using

this, we can define the optimal poliay (b) = argmax,c 4, @* (b, a).

While any POMDP problem has infinitely many belief states, it has been shown that the optimal
value function of a finite-horizon POMDP is piecewise linear and convex. Thus we can define the
optimal value function and policy of a finite-horizon POMDP using a finite séfpflimensional

hyper plans, called-vectors, over the belief state space. As a result, exact offline value iteration
algorithms are able to computé® in a finite amount of time, but the complexity can be very high.
Most approximateffline value iteration algorithms achieve computational tractability by selecting

a small subset of belief states, and keeping only thesectors which are maximal at the selected
belief states [1, 3, 4]. The precision of these algorithms depend on the number of belief points and
their location in the space of beliefs.

3 Online Search in POMDPs

Contrary to offline approaches, which compute a complete policy determining an action for every
belief state, an online algorithm takes as input the current belief state and returns the single action
which is the best for thiparticular belief state. The advantage of such an approach is that it only
needs to consider belief states that are reachable from the current belief state. This naturally provides
a small set of beliefs, which could be exploited as in offline methods. But in addition, since online
planning is done at every step (and thus generalization between beliefs is not required), it is sufficient
to calculate only thenaximal valuefor the current belief state, not the full optimalvector. A
lookahead search algorithm can compute this value in two simple steps.

First we build a tree of reachable belief states from the current belief state. The current belief is the
top node in the tree. Subsequent belief states (as calculated biptlheo) function) are represented

using OR-nodes (at which we must choose an action) and actions are included in between each layer
of belief nodes using AND-nodes (at which we must consider all possible observations). Note that
in general the belief MDP could have a graph structure with cycles. Our algorithm simply handle



such structure by unrolling the graph into a tree. Hence, ifeeeh a belief that is already elsewhere
in the tree, it will be duplicated.

Second, we estimate the value of the current belief state by propagating value estimates up from the
fringe nodes, to their ancestors, all the way to the root. An approximate value function is generally
used at the fringe of the tree to approximate the infinite-horizon value. We are particularly interested
in the case where a lower bound and an upper bound on the value of the fringe belief states is
available, as this allows us to get a bound on the error at any specific node. The lower and upper
bounds can be propagated to parent nodes according to:

[ U®) if bis aleafinT,
Ur(b) = { maxqea Ur(b,a) otherwise; @)
UT(b,a) = RB(b,a) +'YZP(O|b7 a)UT(T<b7 a, 0))7 (2)
o€
[ L) if bis aleafinT,
Ly(b) = { maxgea L7(b,a) otherwise; ®)
Lr(b,a) = Rp(b,a) +7 Y P(olb,a)Lr(7(b,a,0)); (4)
0€e)

whereUr(b) and L1 (b) represent the upper and lower boundsl&i{b) associated to belief state
b in the treeT’, Ur(b,a) and L1 (b, a) represent corresponding bounds®@h(b, ), and L(b) and
U (b) are the bounds on fringe nodes, typically computed offline.

Performing a completk-step lookahead search multiplies the error bound on the approximate value
function used at the fringe by* ([13]), and thus ensures better value estimates. However, it has
complexity exponential ik, and may explore belief states that have very small probabilities of oc-
curring (and an equally small impact on the value function) as well as exploring suboptimal actions
(which have no impact on the value function). We would evidently prefer to have a more efficient
online algorithm, which can guarantee equivalent or better error bounds. In particular, we believe
that the best way to achieve this is to have a search algorithm which uses estimates of error reduction
as a criteria to guide the search over the reachable beliefs.

4 Anytime Error Minimization Search

In this section, we review the Anytime Error Minimization Search (AEMS) algorithm we had first
introduced in [11] and present a novel mathematical derivation of the heuristics that we had sug-
gested. We also provide new theoretical results describing sufficient conditions under which the
heuristics are guaranteed to yieldptimal solutions.

Our approach uses a best-first search of the belief reachability tree, where error minimization (at the
root node) is used as the search criteria to select which fringe nodes to expand next. Thus we need a
way to express the error on the current belief (i.e. root node) as a function of the error at the fringe
nodes. This is provided in Theorem 1. Let us denot& (i), the set of fringe nodes of a tr&e (ii)

er(b) = V*(b) — Lp(b), the error function for nodéin the treeT’; (iii) e(b) = V*(b) — L(b), the

error at a fringe nodé € F(T)); (iv) hl;“b, the unique action/observation sequence that leads from
the rootb, to beliefd in treeT’; (v) d(h), the depth of an action/observation sequeln¢eumber of
actions); and (V)P (hlbo, 7*) = [T P(Ri|bpi=", hi)m*(bhi-1, hi), the probability of executing

the action/observation sequencé we follow the optimal policyx* from the root nodé, (where

hi andh! refers to the'” action and observation in the sequecendbd”: is the belief obtained

after taking thei first actions and observations from beltef 7*(b, a) is the probability that the
optimal policy chooses actianin beliefb).

By abuse of notation, we will uskto represent both a belief node in the tree and its associated
belief.

We are considering using a technique proposed in the LAO* algorithm [12] to handle cycle, but we have
not investigated this fully, especially in terms of how it affects the heuristic value presented below.

%e.g. >_be () Should be interpreted as a sum over all fringe nodes in the tree, w(ibil¢o be the error
associated to the belief in fringe noble




Theorem 1. In any tre€T’, ex(by) < 3 ,c r(r A2 P(RY b, 7*)e(b).

Proof. Consider an arbitrary parent nodein tree 7' and let's denotei; = argmax, 4 L7 (b,a). We

haveer(b) = V*(b) — Lr(b). If af = =*(b), thener(b) = ¥ 2 oeq Plo]b, w(b))e(r (b, 7" (b), 0)).

On the other hand, wheaf # =*(b), then we know thatLr (b, 7* (b)) < Lr(b,ai) and therefore
er(b) <> ,cq Plo|b, 7 (b))e(r(b, 7" (b), 0)). Consequently, we have the following:

e(b if be F(T)
er(b) < { v > P(olb,7* (b))er(r(b, 7*(b),0)) otherwise
o€

Thener(bo) < 3pc 7y yd“bTO’b)P(hl;“ﬂbo, 7*)e(b) can be easily shown by induction. O

4.1 Search Heuristics

From Theorem 1, we see that the contribution of each fringe node to the erbgrisnsimply
the termydh2"") P(hb by, 7*)e(b). Consequently, if we want to minimizer(bo) as quickly as
possible, we should expand fringe nodes reached by the optimal pdlityat maximize the term

bg,b . .
ke )P(h$’b|bo, 7*)e(b) as they offer the greatest potential to redugéb,). This suggests us
a sound heuristic to explore the tree in a best-first-search way. Unfortunately we do novKnow
nor *, which are required to compute the tera(®) and P(h?’b|bo,7r*); nevertheless, we can
approximate them. First, the terafb) can be estimated by the difference between the lower and
upper bound. We defirigb) = U(b) — L(b) as an estimate of the error introduced by our bounds at
fringe nodeb. Clearly,é(b) > e(b) sinceU (b) > V*(b).

To approximateP(h%’ﬂbo,7r*), we can view the termr* (b, a) as the probability that action

is optimal in beliefso. Thus, we consider an approximate polity that represents the proba-
bility that actiona is optimal in belief staté given the boundd.r(b,a) and Ur (b, a) that we

have onQ*(b,a) in tree T. More precisely, to computér(b,a), we considerQ*(b,a) as a
random variable and make some assumptions about its underlying probability distribution. Once
cumulative distribution functiong’2:?, s.t. Fi%(z) = P(Q*(b,a) < x), and their associated

density functionsf%“ are determined for eactb, a) in tree T, we can compute the probability
fr(b,a) = P(Q'(b,a') < Q*(ba)Va' # a) = [, f5"(«) [La 4o F (x)dz. Computing this

integral may not be computationally efficient depending on how we define the fungﬁblmsWe
consider two approximations.

One possible approximation is to simply compute the probability that the Q-value of a given action
is higher than its parent belief state value (instead of all actions’ Q-value). In this case, we get
wr(b,a) = [°° fr“(x)Fh(x)dx, where F% is the cumulative distribution function for ™ (b),

given boundd.r(b) andUr(b) in treeT'. Hence by considering both* (b, a) andV*(b) as random
variables with uniform distributions between their respective lower and upper bounds, we get:

Ur(b,a)—Lr(b)*
irba) = | MO TaGey 1 Ur(b.a) > Lr(b), (5)
0 otherwise.

wheren is a normalization constant such that, . , 77 (b, a) = 1. Notice that if the density function
is 0 outside the interval between the lower and upper bound, théh a) = 0 for dominated
actions, thus they are implicitly pruned from the search tree by this method.

A second practical approximation is:

. [ 1 if a=argmax, 4 Ur(b,a),
fir(b,a) = { 0 otherwise. ©)

which simply selects the action that maximizes the upper bound. This restricts exploration of the
search tree to those fringe nodes that are reached by sequence of actions that maximize the upper
bound of their parent belief state, as done in #@* algorithm [14]. The nice property of this
approximation is that these fringe nodes are the only nodes that can potentially reduce the upper
bound inby.



Using either of these two approximations fof, we can estimate the error contributién(b, b) of
a fringe node on the value of root beliefy in tree T, as:éx(bg, b) = v P(h2 by, 77)é(b).
Using this as a heuristic, the next fringe nod@) to expand in treel is defined as$(T) =
argmaxye y ) 1A P(hE by, 717)é(b). We uSeAEMS1® to denote the heuristic that uses
as defined in Equation 5, akdEMS2* to denote the heuristic that uses as defined in Equation 6.

4.2 Algorithm

Algorithm 1 presents the anytime error minimization search. Since the objective is to provide a
near-optimal action within a finite allowed online planning time, the algorithm accepts two input
parameterst, the online search time allowed per action, anthe desired precision on the value
function.

Algorithm 1 AEMS: Anytime Error Minimization Search

Function SEARCH(t, €)
Static : T: an AND-OR tree representing the current search tree.
to < TIME()
while TIME() — to < t and not SOLVED(ROOT(T'), €) do
b* — b(T)
EXPAND(b™)
UPDATEANCESTOR$b™)
end while
return argmax,. 4 L7 (ROOT(T'), a)

The ExPAND function expands the tree one level under the ngdey adding the next action and
belief nodes to the tre® and computing their lower and upper bounds according to Equations 1-
4. After a node is expanded, theeDATEANCESTORSfunction simply recomputes the bounds of

its ancestors according to Equations determiriiig’), V*(b), P(o|b, a) andQ* (b, a), as outlined

in Section 2. It also recomputes the probabilities(b, a) and the best actions for each ancestor
node. To find quickly the node that maximizes the heuristic in the whole tree, each node in the tree
contains a reference to the best node to expand in their subtree. These references are updated by
the UPDATEANCESTORSfunction without adding more complexity, such that when this function
terminates, we always know immediatly which node to expand next, as its reference is stored in the
root node. The search terminates whenever there is no more time available, or we have feund an
optimal solution (verified by the @ vED function). After an action is executed in the environment,

the treeT’ is updated such that our new current belief state becomes the r@ptadifnodes under

this new root can be reused at the next time step.

4.3 Completeness and Optimality

We now provide some sufficient conditions under which our heuristic search is guaranteed to con-
verge to are-optimal policy after a finite number of expansions. We show that the heuristics pro-
posed in Section 4.1 satisfy those conditions, and thereforachmissible. Before we present the
main theorems, we provide some useful preliminary lemmas.

Lemma 1. In any treeT’, the approximate error contributioéi- (bo, b;) of a belief nodé, at depth
d is bounded by (bg, bg) < v sup, é(b).

Proof. P(h%0"°|bo, 7#7) < 1 andé(b) < sup,, é(b') for all b. Thusér(bo, ba) < v sup, é(b). 0

For the following lemma and theorem, we will dend®¢h,,|bo, ha) = Hfg? P(hi|bri=*, hi) the
probability of observing the sequence of observatibnpsn some action/observation sequerice
given that the sequence of actialgin h is performed from current beliéf, and 7 (T') C F(T)

the set of all fringe nodes i such thatP(h?’b|bo, #r) > 0, for 77 defined as in Equation 6 (i.e.

3This heuristic is slightly different from the AEMS1 heuristic we had introduced in [11].
“This is the same as the AEMS2 heuristic we had introduced in [11].



the set of fringe nodes reached by a sequence of actions imwhith action maximizds; (b, a)
in its respective belief state.)

Lemma 2. For any treeT, ¢ > 0, and D such thaty? sup, é(b) < ¢, if for all b € ]?(T), either
d(h%") > D or there exists an ancestét of b such thater (V') < ¢, thenér(by) < e.

Proof. Let's denotei] = argmax, 4 Ur(b,a). Notice that for any tre@, and parent beligf € T, ér(b) =
Ur(b)—Lr(b) < Ur(b,as )—Lr(b,as ) = ,cq P(olb, a; )ér(r(b,az , 0)). Consequently, the following
recurrence is an upper bound &n(b):

&(b) if b € F(T)

s (b) < € if ér(b) <e

er(®) 33 Plolb,al)er((b,al',0)) otherwise
0€EN

bg,b

By unfolding the recurrence fobo, we geteér(bo) < 3,caem ™" O P(hP) bo, b0 )e(b) +

€ henr) 7d(h;°’b)P(h§9’f|b0, hi%:"), whereB(T) is the set of parent nodéshaving a descendant (7))
such thaéT(b’) < e and A(T) is the set of fringe nodes” in F(T") not having an ancestor iB(T"). Hence
if for all b € F(T), d(h%"*) > D or there exists an ancestirof b such thatr(b') < e, then this means
that for allb in A(T), d(hs"*) > D, and thereforeér(bo) < 7 sup, e(b) Xy e acry P(hEY [bo, i) +

bo,b’ bo,b’ bo,b’ bo,b’
6Zb'eB(T) P(hqg,o |b0’h79,a ) < EZb'eA(T)uB(T) P(h’TU,o |b07hT(’],a ) =€ O

Theorem 2. For any treeT" ande > 0, if 77 is defined such thahfy, 7z, 77 (b, ai ) > 0 for
al = argmax,¢ 4 Ur (b, a), then Algorithm 1 using(7T) is complete and-optimal.

Proof. If v = 0, then the proof is immediate. Consider now the case wheee (0,1). Clearly, sincel/

is bounded above and is bounded below, theé is bounded above. Now using € (0, 1), we can find a
positive integerD such thaty” sup, é(b) < e. Let's denoteA] the set of ancestor belief statestoin the
treeT, and given a finite sett of belief nodes, let's definéf ™ (A) = minye 4 ér(b). Now let's defineZ, =
{T|Tfinite,b € F(T),er"™(AL) > e} andB = {b| (b) infreg, P(h%%|bo, #7) > 0,d(h5") < D}.
Clearly, by the assumption thatf, 1 e, )> 77 (b, @3 ) > 0, thenB contains all belief stateswithin depth

D such thagé(b) > 0, P(hbTO’;b|bO, h’}f;f’) > 0 and there exists a finite trééwhereb € F(T') and all ancestors

b of b haveér(b') > e. Furthermorep is finite since there are only finitely many belief states within depth
D. Hence there exist &,,i, = minpes yd(hl%o’b)é(b) infreq, P(h30°|bo, 77). Clearly, Em:, > 0 and we
know that for any tred’, all beliefsb in BN ]?(T) have an approximate error contributién(bo, b) > Emin-
SinceE,.i;» > 0 andy € (0, 1), there exist a positive integdd’ such thatyD' sup, é(b) < Emin. Hence

by Lemma 1, this means that Algorithm 1 cannot expand any node at d¥pth beyond before expanding
a treeT whereB N ]?( T) = (). Because there are only finitely many nodes within ddpththen it is clear
that Algorithm 1 will reach such tre€ after a finite number of expansions. Furthermore, for thisTresince
BN F(T) = 0, we have that for all beliefs € F(T), eitherd(h}°"") > D or é7""(Al) < e. Hence by
Lemma 2, this implies thatr (bo) < €, and consequently Algorithm 1 will terminate after a finite number of
expansions (8LVED(bo, €) will evaluate to true) with ar-optimal solution (sincer (bo) < ér(bo)). O]

From this last theorem, we notice that we can potentially idgvenany different admissible
heuristics for Algorithm 1; the main sufficient condition being that(b,a) > 0 for a =
argmax, 4, Ur(b,a’). It also follows from this theorem that the two heuristics described above,
AEMS1 and AEMS2, are admissible. The following corollaries prove this:

Corollary 1. Algorithm 1, usindi(T), with 77 as defined in Equation 6 is complete andptimal.

Proof. Immediate by Theorem 2 and the fact that(b, 4! ) = 1 for all b, T". O

Corollary 2. Algorithm 1, usin@(T), with 77 as defined in Equation 5 is complete andptimal.

Proof. We first notice thatUr (b, a) — L7(b))?/(Ur(b,a) — L1(b,a)) < ér(b, a), sinceLr(b) >
Lr(b,a) for all a. Furthermoreér(b,a) < sup, é(b’). Therefore the normalization constant
n > (|A|sup, é(b))~!. Foral = argmax,c 4 Ur(b,a), we haveUr(b,ai ) = Ur(b), and there-
fore Ur(b,al) — Lr(b) = ér(b). Hence this means thatr(b,af) = n(ér(b))?/ér(b,al) >



(| Al (supy (b))~
(|A[(supy é(b))%)~"€?

er(b))? for all T, b. Hence, for anye > 0, infy 7jep(b)>e 77 (b, a7 )
> 0. Hence, corrolary follows from Theorem 2.

v

5 Experiments

In this section we present a brief experimental evaluation of Algorithm 1, showing that in addition to

its useful theoretical properties, the empirical performance matches, and in some cases exceeds, that
of other online approaches. The algorithm is evaluated in three large POMDP environments: Tag
[1], RockSample [3] and FieldVisionRockSample (FVRS) [11]; all are implemented using a factored
state representation. In each environments we compute the Blind ptdigyet a lower bound

and the FIB algorithm [15] to get an upper bound. We then compare performance of Algorithm 1
with both heuristics (AEMS1 and AEMS?) to the performance achieved by other online approaches
(Satia [7], BI-POMDP [8], RTBSS [10]). For all approaches we impose a real-time constraint of

1 sec/action, and measure the following metrics: average return, average error bound réduction
(EBR), average lower bound improvemégitBl), number of belief nodes explored at each time

step, percentage of belief nodes reused in the next time step, and the average online time per action
(< 1s means the algorithm found aroptimal action§. Satia, BI-POMDP, AEMS1 and AEMS2

were all implemented using the same algorithm since they differ only in their choice of search
heuristic used to guide the search. RTBSS served as a base line for a cotrgtiepelookahead

search using branch & bound pruning. All results were obtained on a Xeon 2.4 Ghz with 4Gb of
RAM; but the processes were limited to use a max of 1Gb of RAM.

Table 1 shows the average value (over 1000+ runs) of the different statistics. As we can see from
these results, AEMS2 provides the best average return, average error bound reduction and average
lower bound improvement in all considered environments. The higher error bound reduction and
lower bound improvement obtained by AEMS?2 indicates that it can guarantee performance closer
to the optimal. We can also observe that AEMS2 has the best average reuse percentage, which
indicates that AEMS2 is able to guide the search toward the most probable nodes and allows it to
generally maintain a higher number of belief nodes in the tree. Notice that AEMS1 did not perform
very well, except in FVRS[5,7]. This could be explained by the fact that our assumption that the
values of the actions are uniformly distributed between the lower and upper bounds is not valid in
the considered environments.

Finally, we also examined how fast the lower and upper bounds converge if we let the algorithm run
up to 1000 seconds on the initial belief state. This gives an indication of which heuristic would be
the best if we extended online planning time past 1sec. Results for RockSample[7,8] are presented
in Figure 2, showing that the bounds converge much more quickly for the AEMS2 heuristic.

6 Conclusion

In this paper we examined theoretical properties of online heuristic search algorithms for POMDPs.
To this end, we described a general online search framework, and examined two admissible heuris-
tics to guide the search. The first assumes @&, a) is distributed uniformly at random be-
tween the bounds (Heuristic AEMS1), the second favors an optimistic point of view, and assume
the Q* (b, a) is equal to the upper bound (Heuristic AEMS2). We provided a general theorem that
shows that AEMS1 and AEMS2 are admissible and lead to complete-aptimal algorithms. Our
experimental work supports the theoretical analysis, showing that AEMS2 is able to outperform on-
line approaches. Yet it is equally interesting to note that AEMSL1 did not perform nearly as well.
This highlights the fact that not all admissible heuristics are equally useful. Thus it will be interest-
ing in the future to develop further guidelines and theoretical results describing which subclasses of
heuristics are most appropriate.

The policy obtained by taking the combination of thi a-vectors that each represents the value of a

policy performing the same action in every belief state.
®The error bound reduction is definedlas “%)=1Z0) | when the search process terminateson
"The lower bound improvement is definedas(bo) — L(bo), when the search process terminateson

8For RTBSS, the maximum search depth under the 1sec time constraint is show in parenthesis.
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Figure 1: Comparison of different online search al

gorithm in different environments.
Heuristic / Belief | Reuse| Time
Algorithm | Return| EBR (%) | LBI Nodes| (%) | (ms)
+0.01 +0.1 + 0.01 - +0.1 +1
Tag([S] = 870,[A] =5,]Q] = 30) 207 [ AEmS2
RTBSS(5) [ -10.30 223 3.03 [ 45067] © 580 - AEMS1

Satia & Lave| -8.35 229 2.47 | 36908| 10.0 | 856 ”g;‘F;OMDP

AEMS1 -6.73 49.0 3.92 | 43693| 25.1 | 814 15p 3
BI-POMDP | -6.22 76.2 7.81 | 79508 | 54.6 | 622
AEMS2 -6.19 76.3 7.81 | 80250| 54.8 | 623

251

V(b))

RockSample[7,8[[S] = 12545, [A] = 13,[Q[ = 2) 10r !

Satia & Lave| 7.35 3.6 0 509 8.9 900 .

AEMS1 10.30 9.5 0.90 579 5.3 916 T T T

RTBSS(2) 10.30 9.7 1.00 439 0 896 5 . .

BI-POMDP | 1843 | 333 433 | 2152 | 299 | 953 10° 10™ 10° 10' 10° 10°

AEMS2 | 20.75 | 524 | 530 | 3145 | 36.4 | 859 Time (s)

FVRS[5,7](]S[ = 3201, [A[ = 5,]Q] = 128)

RTBSS(1) 20.57 7.7 2.07 516 0 254 . . .

BI-POMDP | 22.75 | 111 | 2.08 | 4457 | 04 | 923 Figure 2: Evolution of the upper / lower bounds on
Sata&lave| 2279 | 111 | 205 | 3683 | 0.4 | 947 the initial belief state irRockSample[7,8].

AEMS1 23.31 124 2.24 | 3856 1.4 942
AEMS2 23.39 13.3 2.35 | 4070 1.6 944
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