
Ensemble Clustering using Semidefinite
Programming

Vikas Singh
Biostatistics and Medical Informatics
University of Wisconsin – Madison
vsingh @ biostat.wisc.edu

Lopamudra Mukherjee
Computer Science and Engineering

State University of New York at Buffalo
lm37 @ cse.buffalo.edu

Jiming Peng
Industrial and Enterprise System Engineering
University of Illinois at Urbana-Champaign

pengj @ uiuc.edu

Jinhui Xu
Computer Science and Engineering

State University of New York at Buffalo
jinhui @ cse.buffalo.edu

Abstract

We consider the ensemble clustering problem where the task is to ‘aggregate’
multiple clustering solutions into a single consolidated clustering that maximizes
the shared information among given clustering solutions. We obtain several new
results for this problem. First, we note that the notion of agreement under such
circumstances can be better captured using an agreement measure based on a 2D
string encoding rather than voting strategy based methods proposed in literature.
Using this generalization, we first derive a nonlinear optimization model to max-
imize the new agreement measure. We then show that our optimization problem
can be transformed into a strict 0-1 Semidefinite Program (SDP) via novel con-
vexification techniques which can subsequently be relaxed to a polynomial time
solvable SDP. Our experiments indicate improvements not only in terms of the
proposed agreement measure but also the existing agreement measures based on
voting strategies. We discuss evaluations on clustering and image segmentation
databases.

1 Introduction

In the so-called Ensemble Clustering problem, the target is to ‘combine’ multiple clustering solu-
tions or partitions of a set into a single consolidated clustering that maximizes the information shared
(or ‘agreement’) among all available clustering solutions. The need for this form of clustering arises
in many applications, especially real world scenarios with a high degree of uncertainty such as image
segmentation with poor signal to noise ratio and computer assisted disease diagnosis. It is quite com-
mon that a single clustering algorithm may not yield satisfactory results, while multiple algorithms
may individually make imperfect choices, assigning some elements to wrong clusters. Usually, by
considering the results of several different clustering algorithms together, one may be able to miti-
gate degeneracies in individual solutions and consequently obtain better solutions. The idea has been
employed successfully for microarray data classification analysis [1], computer assisted diagnosis
of diseases [2] and in a number of other applications [3].

Formally, given a data set D = {d1, d2, . . . , dn}, a set of clustering solutions C =
{C1, C2, . . . , Cm} obtained from m different clustering algorithms is called a cluster ensemble.
Each solution, Ci, is the partition of the data into at most k different clusters. The Ensemble Clus-
tering problem requires one to use the individual solutions in C to partition D into k clusters such
that information shared (‘agreement’) among the solutions of C is maximized.



1.1 Previous works

The Ensemble Clustering problem was recently introduced by Strehl and Ghosh [3], in [4] a related
notion of correlation clustering was independently proposed by Bansal, Blum, and Chawla. The
problem has attracted a fair amount of attention and a number of interesting techniques have been
proposed [3, 2, 5, 6], also see [7, 4]. Formulations primarily differ in how the objective of shared
information maximization or agreement is chosen, we review some of the popular techniques next.

The Instance Based Graph Formulation (IBGF) [2, 5] first constructs a fully connected graph G =
(V,W ) for the ensemble C = (C1, . . . , Cm), each node represents an element of D = {d1, . . . , dn}.
The edge weight wij for the pair (di, dj) is defined as the number of algorithms in C that assign
the nodes di and dj to the same cluster (i.e., wij measures the togetherness frequency of di and
dj). Then, standard graph partitioning techniques are used to obtain a final clustering solution.
In Cluster Based Graph Formulation (CBGF), a given cluster ensemble is represented as C =
{C11, . . . , Cmk} = {C̄1, . . . , C̄m·k} where Cij denotes the ith cluster of the jth algorithm in C.
Like IBGF, this approach also constructs a graph, G = (V,W ), to model the correspondence (or
‘similarity’) relationship among the mk clusters, where the similarity matrix W reflects the Jaccard’s
similarity measure between clusters C̄i and C̄j . The graph is then partitioned so that the clusters of
the same group are similar to one another. Variants of the problem have also received considerable
attention in the theoretical computer science and machine learning communities. A recent paper
by Ailon, Charikar, and Newman [7] demonstrated connections to other well known problems such
as Rank Aggregation, their algorithm is simple and obtains an expected constant approximation
guarantee (via linear programming duality). In addition to [7], other results include [4, 8].

A commonality of existing algorithms for Ensemble Clustering [3, 2, 9] is that they employ a graph
construction, as a first step. Element pairs (cluster pairs or item pairs) are then evaluated and their
edges are assigned a weight that reflects their similarity. A natural question relates to whether we can
find a better representation of the available information. This will be the focus of the next section.

2 Key Observations: Two is a company, is three a crowd?

Consider an example where one is ‘aggregating’ recommendations made by a group of family and
friends for dinner table seating assignments at a wedding. The hosts would like each ‘table’ to be
able to find a common topic of dinner conversation. Now, consider three persons, Tom, Dick, and
Harry invited to this reception. Tom and Dick share a common interest in Shakespeare, Dick and
Harry are both surfboard enthusiasts, and Harry and Tom attended college together. Because they
had strong pairwise similarities, they were seated together but had a rather dull evening.

A simple analysis shows that the three guests had strong common interests when considered two at
a time, but there was weak communion as a group. The connection of this example to the ensemble
clustering problem is clear. Existing algorithms represent the similarity between elements in D as
a scalar value assigned to the edge joining their corresponding nodes in the graph. This weight
is essentially a ‘vote’ reflecting the number of algorithms that assigned those two elements to the
same cluster. The mechanism seems perfect until we ask if strong pairwise coupling necessarily
implies coupling for a larger group as well. The weight metric considering two elements does not
retain information about which algorithms assigned them together. When expanding the group to
include more elements, one is not sure if a common feature exists under which the larger group is
similar. It seems natural to assign a higher priority to triples or larger groups of people that were
recommended to be seated together (must be similar under at least one feature) compared to groups
that were never assigned to the same table by any person in the recommendation group (clustering
algorithm), notwithstanding pairwise evaluations, for an illustrative example see [10]. While this
problem seems to be a distinctive disadvantage for only the IBGF approach; it also affects the CBGF
approach. This can be seen by looking at clusters as items and the Jaccard’s similarity measure as
the vote (weight) on the edges.

3 Main Ideas

To model the intuition above, we generalize the similarity metric to maximize similarity or ‘agree-
ment’ by an appropriate encoding of the solutions obtained from individual clustering algorithms.



More precisely, in our generalization the similarity is no longer just a scalar value but a 2D string.
The ensemble clustering problem thus reduces to a form of string clustering problem where our
objective is to assign similar strings to the same cluster.

The encoding into a string is done as follows. The data item set is given as D with |D| = n. Let
m be the number of clustering algorithms with each solution having no more than k clusters. We
represent all input information (ensemble) as a single 3D matrix, A ∈ <n×m×k. For every data
element dl ∈ D, Al ∈ <m×k is a matrix whose elements are defined by

Al(i, j) =
{

1 if dl is assigned to cluster i by Cj ;
0 otherwise (1)

It is easy to see that the summation of every row of Al equals 1. We call each Al an A-string. Our
goal is to cluster the elements D = {d1, d2, . . . , dn} based on the similarity of their A-strings.

We now consider how to compute the clusters based on the similarity (or dissimilarity) of strings. We
note that the paper [11] by Gasieniec et al., discussed the so-called Hamming radius p-clustering and
Hamming diameter p-clustering problems on strings. Though their results shed considerable light
on the hardness of string clustering with the selected distance measures, those techniques cannot be
directly applied to the problem at hand because the objective here is fairly different from the one in
[11]. Fortunately, our analysis reveals that a simpler objective is sufficient to capture the essence of
similarity maximization in clusters using certain special properties of the A-strings.

Our approach is partly inspired by the classical k-means clustering where all data points are assigned
to the cluster based on the shortest distance to the cluster center. Imagine an ideal input instance
for the ensemble clustering problem (all clustering algorithms behave similarly) – one with only k
unique members among n A-strings. The partitioning simply assigns similar strings to the same
partition. The representative for each cluster will then be exactly like its members, is a valid A-
string, and can be viewed as a center in a geometric sense. General input instances will obviously
be non-ideal and are likely to contain far more than k unique members. Naturally, the centers of the
clusters will vary from its members. This variation can be thought of as noise or disagreement within
the clusters, our objective is to find a set of clusters (and centers) such that the noise is minimized
and we move very close to the ideal case. To model this, we consider the centers to be in the same
high dimensional space as the A-strings in D (though it may not belong to D). Consider an example
where a cluster i in this optimal solution contains items (d1, d2, . . . , d7). A certain algorithm Cj

in the input ensemble clusters items (d1, d2, d3, d4) in cluster s and (d5, d6, d7) in cluster p. How
would Cj behave if evaluating the center of cluster i as a data item? The probability it assigns the
center to cluster s is 4/7 and the probability it assigns the center to cluster p is 3/7. If we emulate this
logic – we must pick the choice with the higher probability and assign the center to such a cluster.
It can be verified that this choice minimizes the dissent of all items in cluster i to the center. The A-
string for the center of cluster i will have a “1” at position (j, s). The assignment of A-string (items)
to clusters is unknown; however, if it were somehow known, we could find the centers for all other
clusters i ∈ [1, k] by computing the average value at every cell of the A matrices corresponding to
the members of the cluster and rounding the largest value in every row to 1 (rest to 0) and assigning
this as the cluster center. Hence, the dissent within a cluster can be quantified simply by averaging
the matrices of elements that belong to the cluster and computing the difference to the center. Our
goal is to find such an assignment and group the A-strings so that the sum of the absolute differences
of the averages of clusters to their centers (dissent) is minimized. In the subsequent sections, we will
introduce our optimization framework for ensemble clustering based on these ideas.

4 Integer Program for Model 1

We start with a discussion of an Integer Program (IP, for short) formulation for ensemble clustering.
For convenience, we denote the final clustering solution by C∗ = {C∗

1 , . . . , C∗
k} and Cij denotes

the cluster i by the algorithm j. The variables that constitute the IP are as follows.

Xli′ =
{

1 if dl ∈ C∗
i′ ;

0 otherwise (2)

siji′ =

{
1 if C∗

i′ = arg max
i=1,...,k

{|C∗
i′
⋂

Cij |}
0 otherwise

(3)



We mention that the above definition implies that for a fixed index i′, its center, siji′ also provides an
indicator to the cluster most similar to C∗

i′ in the set of clusters produced by the clustering algorithm
Cj . We are now ready to introduce the following IP.

min
k∑

i′=1

k∑
i=1

m∑
j=1

∣∣∣∣siji′ −
∑n

l=1 AlijXli′∑n
l=1 Xli′

∣∣∣∣ (4)

s.t.
k∑

i′=1

Xli′ = 1 ∀l ∈ [1, n],
n∑

l=1

Xli′ ≥ 1 ∀i′ ∈ [1, k], (5)

k∑
i=1

siji′ = 1 ∀j ∈ [1,m], i′ ∈ [1, k], Xli′ ∈ {0, 1}, siji′ ∈ {0, 1}. (6)

(4) minimizes the sum of the difference between siji′ (the center for cluster C∗
i′ ) and the average of

all Alij bits of the data elements dl assigned to cluster C∗
i′ . Recall that siji′ will be 1 if Cij is the

most similar cluster to C∗
i′ among all the clusters produced by algorithm Cj . Hence, if siji′ = 0

and
Pn

l=1 AlijXli′Pn
l=1 Xli′

6= 0, the value
∣∣∣siji′ −

Pn
l=1 AlijXli′Pn

l=1 Xli′

∣∣∣ represents the percentage of data elements
in C∗

i′ that do not consent with the majority of the other elements in the group w.r.t. the clustering
solution provided by Cj . In other words, we are trying to minimize the dissent and maximize the
consent simultaneously. The remaining constraints are relatively simple – (5) enforces the condition
that a data element should belong to precisely one cluster in the final solution and that every cluster
must have size at least 1; (6) ensures that siji′ is an appropriate A-string for every cluster center.

5 0-1 Semidefinite Program for Model 1

The formulation given by (4)-(6) is a mixed integer program (MIP, for short) with a nonlinear ob-
jective function in (4). Solving this model optimally, however, is extremely challenging – (a) the
constraints in (5)-(6) are discrete; (b) the objective is nonlinear and nonconvex. One possible way of
attacking the problem is to ‘relax’ it to some polynomially solvable problems such as SDP (the prob-
lem of minimizing a linear function over the intersection of a polyhedron and the cone of symmetric
and positive semidefinite matrices, see [12] for an introduction). Our effort would be to convert the
nonlinear form in (4) into a 0-1 SDP form. By introducing artificial variables, we rewrite (4) as

min
k∑

i=1

m∑
j=1

k∑
i′=1

tiji′ (7)

siji′ − ciji′ ≤ tiji′ , ciji′ − siji′ ≤ tiji′ ∀i, i′, j, (8)
where the term ciji′ represents the second term in (4) defined by

ciji′ =
∑n

l=1 AlijXli′∑n
l=1 Xli′

∀i, i′, j. (9)

Since both Alij and Xli′ are binary, (9) can be rewritten as

ciji′ =

∑n
l=1 A2

lijX
2
li′∑n

l=1 X2
li′

∀i, i′, j. (10)

Let us introduce a matrix variable yi′ ∈ <n whose lth column is defined by

y
(l)
i′ =

Xli′√∑n
l=1 X2

li′

=
Xli′

‖Xi′‖2

. (11)

Let Aij ∈ <n be a vector whose lth element has value Al(i, j). This allows us to represent (10) as

ciji′ = tr(BijZi′), Z2
i′ = Zi′ , Zi′ � 0, (12)

where Bij = diag(Aij) is a diagonal matrix with (Bij)ll = Al(i, j), the second and third properties
follow from Zi′ = yi′y

T
i′ being a positive semidefinite matrix. Now, we rewrite the constraints for

X in terms of Z. (5) is automatically satisfied by the following constraints on the elements of Zi′ .
n∑

l=1

Z
(ll)
i′ = 1 ∀i′ ∈ [1, k],

n∑
l′=1

Z
(ll′)
i′ ≤ 1 ∀i′ ∈ [1, k],∀l ∈ [1, n]. (13)



where Z
(uv)
i′ refers to the (u, v) entry of matrix Zi′ . Since Z ′

i is a symmetric projection matrix by
construction, (7)-(13) constitute a precisely defined 0-1 SDP that can be expressed in trace form as

min
k∑

i′=1

tr(diag(Ti′ek)) (14)

s.t. (Si′ − Ti′ −Qi′) ≤ 0, (Qi′ − Si′ − Ti′) ≤ 0 ∀i′ ∈ [1, k], (15)

(
k∑

i′=1

Zi′)en = en ∀i′ ∈ [1, k], tr(Zi′) = 1 ∀i′ ∈ [1, k], tr(
k∑

i′=1

Zi′) = k, (16)

Si′ek = em ∀i′ ∈ [1, k], Z ≥ 0; Z2
i′ = Zi′ ; Zi′ = ZT

i′ ; Si′ ∈ {0, 1}. (17)

where Qi′(i, j) = ciji′ = tr(BijZi′), and en ∈ <n is a vector of all 1s.

The experimental results for this model indicate that it performs very well in practice (see [10]).
However, because we must solve the model while maintaining the requirement that Si′ be binary
(otherwise, the problem becomes ill-posed), a branch and bound type method is needed. Such
approaches are widely used in many application areas, but its worst case complexity is exponential
in the input data size. In the subsequent sections, we will make several changes to this framework
based on additional observations in order to obtain a polynomial algorithm for the problem.

6 Integer Program and 0-1 Semidefinite Program for Model 2

Recall the definition of the variables ciji′ , which can be interpreted as the size of the overlap between
the cluster C∗

i′ in the final solution and Cij , and is proportional to the cardinality of C∗
i′ . Let us define

ci∗ji′ = max
i=1,...,k

ciji′ .

Let us also define vector variables qji′ whose ith element is siji′ − ciji′ . In the IP model 1, we try
to minimize the sum of all the L1-norms of qji′ . The main difficulty in the previous formulation
stems from the fact that ciji′ is a fractional function w.r.t the assignment matrix X . Fortunately, we
note that since entries of ciji′ are fractional satisfying

∑k
i=1 ciji′ = 1 for any fixed j, i′, their sum

of squares is maximized when its largest entry is as high as possible. Thus, minimizing the function
1−

∑k
i=1(ciji′)2 is a reasonable substitute to minimizing the sum of the L1-norms in the IP model

1. The primary advantage of this observation is that we do not need to know the ‘index’ (i∗) of
the maximal element ci∗ji′ . As before, X denotes the assignment matrix. We no longer need the
variable s, as it can be easily determined from the solution. This yields the following IP.

min
k∑

i′=1

m∑
j=1

(
n∑

l=1

Xli′)

(
1−

k∑
i=1

(ciji′)
2

)
(18)

s.t.
k∑

i′=1

Xli′ = 1 ∀l ∈ [1, n],
n∑

l=1

Xli′ ≥ 1 ∀i′ ∈ [1, k], Xli′ ∈ {0, 1}. (19)

We next discuss how to transform the above problem to a 0-1 SDP. For this, we first note that the
objective function (18) can be expressed as follows.

min
k∑

i′=1

m∑
j=1

(
(

n∑
l=1

Xli′)−
k∑

i=1

(
∑n

l=1 AlijXli′)
2∑n

l=1 Xli′

)
, (20)

which can be equivalently stated as

min

nm−
k∑

i′=1

m∑
j=1

k∑
i=1

(
∑n

l=1 AlijXli′)
2∑n

l=1 Xli′

 , (21)

The numerator of the second term above can be rewritten as

(
n∑

l=1

AlijXli′)2 = (A1ijX1i′ + . . . + AnijXni′)2 = (AT
ijXi′)2 = XT

i′ AijA
T
ijXi′ , (22)



where X ′
i is the i′th column vector of X . Therefore, the second term of (21) can be written as

= tr(
k∑

i′=1

m∑
j=1

k∑
i=1

XT
i′ AijA

T
ijXi′(XT

i′ Xi′)−1)

= tr(
k∑

i′=1

m∑
j=1

k∑
i=1

AijA
T
ijZi′) = tr(

m∑
j=1

k∑
i=1

AijA
T
ijZ) = tr(

m∑
j=1

BjZ) = tr(BZ). (23)

In (23), Zi′ = Xi′(XT
i′ Xi′)−1XT

i′ (same as in IP model 1) and Z =
∑k

i′=1 Z ′
i and B =

∑m
j=1 Bj .

Since each matrix Zi′ is a symmetric projection matrix and Xi′1
and Xi′2

are orthogonal to each other
when i′1 6= i′2, Z is a projection matrix of the form X(XT X)−1X . The last fact also used in [13]
is originally attributed to an anonymous referee in [14]. Finally, we derive the 0-1 SDP formulation
for the problem (18)-(19) as follows.

min (nm− tr(BZ)) (24)
s.t. Zen = en ∀i′ ∈ [1, k], (25)

tr(Z) = k, Z ≥ 0; Z2 = Z; Z = ZT . (26)

Relaxing and Solving the 0-1 SDP: The relaxation to (24)-(26) exploits the fact that Z is a projec-
tion matrix satisfying Z2 = Z. This allows replacing the last three constraints in (26) as I � Z � 0.
By establishing the result that any feasible solution to the second formulation of 0-1 SDP, Zfeas is a
rank k matrix, we first solve the relaxed SDP using SeDuMi [15], take the rank k projection of Z∗

and then adopt a rounding based on a variant of the winner-takes-all approach to obtain a solution
in polynomial time. For the technical details and their proofs, please refer to [10].

7 Experimental Results

Our experiments included evaluations on several classification datasets, segmentation databases and
simulations. Due to space limitations, we provide a brief summary here. Our first set of exper-
iments illustrates an application to several datasets from the UCI Machine Learning Repository:
(1) Iris dataset, (2) Soybean dataset and (3) Wine dataset; these include ground truth data, see
http://www.ics.uci.edu/ mlearn/MLRepository.html. To create the ensemble, we used a set of [4, 10]
clustering schemes (by varying the clustering criterion and/or algorithm) from the CLUTO clustering
toolkit. The multiple solutions comprised the input ensemble, our model was then used to determine
a agreement maximizing solution. The ground-truth data was used at this stage to evaluate accuracy
of the ensemble (and individual schemes). The results are shown in Figure 1(a)-(c). For each case,
we can see that the ensemble clustering solution is at least as good as the best clustering algorithm.
Observe, however, that while such results are expected for this and many other datasets (see [3]),
the consensus solution may not always be superior to the ‘best’ clustering solution. For instance,
in Fig. 1(c) (for m = 7) the best solution has a marginally lower error rate than the ensemble. An
ensemble solution is useful because we do not know a priori that which algorithm will perform the
best (especially if ground truth is unavailable).

3 4 5 6 7 8 9 10 11
Number of  clustering algorithms in ensemble (m)

0.1

0.2

0.3

0.4

0.5

M
isl

ab
el

le
d 

ca
se

s i
n 

ea
ch

 a
lg

or
ith

m

cluster ensemble
individual algorithms

3 4 5 6 7 8 9 10 11
Number of  clustering algorithms in ensemble (m)

0.1

0.2

0.3

0.4

M
isl

ab
el

le
d 

ca
se

s i
n 

ea
ch

 a
lg

or
ith

m

cluster ensemble
individual algorithms

3 4 5 6 7 8 9 10 11
Number of  clustering algorithms in ensemble (m)

0.1

0.2

0.3

0.4

0.5

0.6

M
isl

ab
el

le
d 

ca
se

s i
n 

ea
ch

 a
lg

or
ith

m
 

cluster ensemble
individual algorithms

(a) (b) (c)
Figure 1: Synergy. The fraction of mislabeled cases ([0, 1]) in a consensus solution (∗) is com-
pared to the number of mislabelled cases (∆) in individual clustering algorithms. We illustrate the
ensemble effect for the Iris dataset in (a), the Soybean dataset in (b), and the Wine dataset in (c).



Our second set of experiments focuses on a novel application of ensembles to the problem of image
segmentation. Even sophisticated segmentation algorithms may yield ‘different’ results on the same
image, when multiple segmentations are available, it seems reasonable to ‘combine’ segmentations
to reduce degeneracies. Our experimental results indicate that in many cases, we can obtain a better
overall segmentation that captures (more) details in the images more accurately with fewer outlying
clusters. In Fig. 2, we illustrate the results on an image from the Berkeley dataset. The segmenta-
tions were generated using several powerful algorithms including (a) Normalized Cuts, (b) Energy
Minimization by Graph Cuts and (c)–(d) Curve Evolution. Notice that each algorithm performs well
but misses out on some details. For instance, (a) and (d) do not segment the eyes; (b) does well in
segmenting the shirt collar region but can only recognize one of the eyes and (c) creates an additional
cut across the forehead. The ensemble (extreme right) is able to segment these details (eyes, shirt
collar and cap) nicely by combining (a)–(d). For implementation details of the algorithm including
settings, preprocessing and additional evaluations, please refer to [10].

(a) (b) (c) (d) ensemble
Figure 2: A segmentation ensemble on an image from the Berkeley Segmentation dataset. (a)–(d)
show the individual segmentations overlaid on the input image, the right-most image shows the
segmentation generated from ensemble clustering.

The final set of our experiments were performed on 500 runs of artificially generated cluster ensem-
bles. We first constructed an initial set segmentation, this was then repeatedly permuted (up to 15%)
yielding a set of clustering solutions. The solutions from our model and [3] were compared w.r.t.
our objective functions and Normalized Mutual Information used in [3]. In Figure 3(a), we see that
our algorithm (Model 1) outperforms [3] on all instances. In the average case, the ratio is slightly
more than 1.5. We must note the time-quality trade-off because solving Model 1 requires a branch-
and-bound approach. In Fig. 3(b), we compare the results of [3] with solutions from the relaxed
SDP Model 2 on (24). We can see that our model performs better in ∼ 95% cases. Finally, Figure
1(b) shows a comparison of relaxed SDP Model 2 with [3] on the objective function optimized in [3]
(using best among two techniques). We observed that our solutions achieve superior results in 80%
of the cases. The results show that even empirically our objective functions model similarity rather
well, and that Normalized Mutual Information may be implicitly optimized within this framework.
Remarks. We note that the graph partitioning methods used in [3] are typically much faster than the
time needed by SDP solvers (e.g., SeDuMi [15] and SDPT3) for comparable problem sizes. How-
ever, given the increasing interest in SDP in the last few years, we may expect the development of
new algorithms, and faster/more efficient software tools.

8 Conclusions

We have proposed a new algorithm for ensemble clustering based on a SDP formulation. Among
the important contributions of this paper is, we believe, the observation that the notion of agreement
in an ensemble can be captured better using string encoding rather than a voting strategy. While
a partition problem defined directly on such strings yields a non-linear optimization problem, we
illustrate a transformation into a strict 0-1 SDP via novel convexification techniques. The last result
of this paper is the design of a modified model of the SDP based on additional observations on the
structure of the underlying matrices. We discuss extensive experimental evaluations on simulations
and real datasets, in addition, we illustrate application of the algorithm for segmentation ensembles.
We feel that the latter application is of independent research interest; to the best of our knowledge,
this is the first algorithmic treatment of generating segmentation ensembles for improving accuracy.



0 1 2 3 4 5
Ratios of solutions of objective functions of the two algorithms
0

50

100

150

200

N
um

be
r o

f i
ns

ta
nc

es

BetterWorse

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
Ratios of solutions of objective functions of the two algorithms
0

100

200

300

400

500

N
um

be
r o

f i
ns

ta
nc

es

BetterWorse

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1
Normalized difference

0

50

100

150

200

N
um

be
r o

f i
ns

ta
nc

es

Worse Better

(a) (b) (c)
Figure 3: A comparison of [3] with SDP Model 1 in (a), and with SDP Model 2 on (24) in (b).
The solution from [3] was used as the numerator. In (c), comparisons (difference in normalized
values) between our solution and the best among IBGF and CBGF based on the Normalized Mutual
Information (NMI) objective function used in [3].

Acknowledgments. This work was supported in part by NSF grants CCF-0546509 and IIS-
0713489. The first author was also supported by start-up funds from the Dept. of Biostatistics
and Medical Informatics, UW – Madison. We thank D. Sivakumar for useful discussions, Johan
Löfberg for a thorough explanation of the salient features of Yalmip [16], and the reviewers for sug-
gestions regarding the presentation of the paper. One of the reviewers also pointed out a typo in the
derivations in §6.

References
[1] V. Filkov and S. Skiena. Integrating microarray data by consensus clustering. In Proc. of International

Conference on Tools with Artificial Intelligence, page 418, 2003.

[2] X. Z. Fern and C. E. Brodley. Solving cluster ensemble problems by bipartite graph partitioning. In Proc.
of International Conference on Machine Learning, page 36, 2004.

[3] A. Strehl and J. Ghosh. Cluster Ensembles – A Knowledge Reuse Framework for Combining Partition-
ings. In Proc. of AAAI 2002, pages 93–98, 2002.

[4] N. Bansal, A. Blum, and S. Chawla. Correlation clustering. In Proc. Symposium on Foundations of
Computer Science, page 238, 2002.

[5] S. Monti, P. Tamayo, J. Mesirov, and T. Golub. Consensus clustering: A resampling-based method for
class discovery and visualization of gene expression microarray data. Mach. Learn., 52(1-2):91–118,
2003.

[6] A. Gionis, H. Mannila, and P. Tsaparas. Clustering aggregation. In Proc. of International Conference on
Data Engineering, pages 341–352, 2005.

[7] N. Ailon, M. Charikar, and A. Newman. Aggregating inconsistent information: ranking and clustering.
In Proc. of Symposium on Theory of Computing, pages 684–693, 2005.

[8] M. Charikar, V. Guruswami, and A. Wirth. Clustering with qualitative information. J. Comput. Syst. Sci.,
71(3):360–383, 2005.

[9] X. Z. Fern and C. E. Brodley. Random projection for high dimensional data clustering: A cluster ensemble
approach. In Proceedings of International Conference on Machine Learning, 2003.

[10] V. Singh. On Several Geometric Optimization Problems in Biomedical Computation. PhD thesis, State
University of New York at Buffalo, 2007.

[11] L. Gasieniec, J. Jansson, and A. Lingas. Approximation algorithms for hamming clustering problems. In
Proc. of Symposium on Combinatorial Pattern Matching, pages 108–118, 2000.

[12] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, New York, 2004.

[13] J. Peng and Y. Wei. Approximating k-means-type clustering via semidefinite programming. SIAM Journal
on Optimization, 18(1):186–205, 2007.

[14] A. D. Gordon and J. T. Henderson. An algorithm for euclidean sum of squares classification. Biometrics,
33:355–362, 1977.

[15] J. F. Sturm. Using SeDuMi 1.02, A Matlab Toolbox for Optimization over Symmetric Cones. Optimiza-
tion Methods and Software, 11-12:625–653, 1999.

[16] J. Löfberg. YALMIP : A toolbox for modeling and optimization in MATLAB. In CCA/ISIC/CACSD,
September 2004.


