Part of Advances in Neural Information Processing Systems 19 (NIPS 2006)
Fei Sha, Lawrence Saul
We study the problem of parameter estimation in continuous density hidden Markov models (CD-HMMs) for automatic speech recognition (ASR). As in support vector machines, we propose a learning algorithm based on the goal of margin maximization. Unlike earlier work on max-margin Markov networks, our approach is specifically geared to the modeling of real-valued observations (such as acoustic feature vectors) using Gaussian mixture models. Unlike previous discriminative frameworks for ASR, such as maximum mutual information and minimum classification error, our framework leads to a convex optimization, without any spurious local minima. The objective function for large margin training of CD-HMMs is defined over a parameter space of positive semidefinite matrices. Its optimization can be performed efficiently with simple gradient-based methods that scale well to large problems. We obtain competitive results for phonetic recognition on the TIMIT speech corpus.