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Abstract

We establish a general oracle inequality for clipped approximate minimizers of
regularized empirical risks and apply this inequality to support vector machine
(SVM) type algorithms. We then show that for SVMs using Gaussian RBF kernels
for classification this oracle inequality leads to learning rates that are faster than
the ones established in [9]. Finally, we use our oracle inequality to show that a
simple parameter selection approach based on a validation set can yield the same
fast learning rates without knowing the noise exponents which were required to
be known a-priori in [9].

1 Introduction

The theoretical understanding of support vector machines (SVMs) and related kernel-based meth-
ods has been substantially improved in recent years. For example using Talagrand’s concentration
inequality and local Rademacher averages it has recently been shown that SVMs for classification
can learn with rates up ton−1 under somewhat realistic assumptions on the data-generating distri-
bution (see [9, 11] and the related work [2]). However, the so-called “shrinking technique” of [9, 11]
for establishing such rates, requires the free parameters to be chosena-priori, and in addition, the
optimal values of these parameters depend on features of the data-generating distribution which are
typically unknown. Consequently, [9, 11] do not provide a practical method for learning with fast
rates. On the other hand, the oracle inequality in [2] only holds for distributions having Tsybakov
noise exponent∞, and hence it describes a situation which is rarely met in practice.

The goal of this work is to overcome these shortcomings by establishing a general oracle inequality
(see Theorem 3.1) for regularized empirical risk minimizers. The key ingredient of this oracle
inequality is the observation that for most commonly used loss functions it is possible to “clip”
the decision function of the algorithm before beginning with the theoretical analysis. In addition,
a careful choice of the weighted empirical process Talagrand’s inequality is applied to, makes the
“shrinking technique” superfluous. Finally, by explicitly dealing withε-approximate minimizers of
the regularized risk our results also apply to actual SVM algorithms.

With the help of the general oracle inequality we then establish an oracle inequality for SVM type
algorithms (see Theorem 2.1) as well as a simple oracle inequality for model selection (see Theorem
4.2). For the former, we show that it leads to improved rates for e.g. binary classification under
the assumptions considered in [9] and a-priori known noise exponents. Using the model selection
theorem we then show how our new oracle inequality for SVMs can be used to analyze a simple
parameter selection procedure based on a validation set that achieves the same learning rates without
prior knowledge on the noise exponents.

The rest of this work is organized as follows: In Section 2 we present our oracle inequality for
SVM type algorithms. We then discuss its implications and analyze the simple parameter selection



procedure when using Gaussian RBF kernels. In Section 3 we then present and prove the general
oracle inequality. The proof of Theorem 2.1 as well as the oracle inequality for model selection can
be found in Section 4.

2 Main Results

Throughout this work we assume thatX is compact metric space,Y ⊂ [−1, 1] is compact,P
is a Borel probability measure onX × Y , andF is a set of functions overX such that0 ∈ F .
OftenF is a reproducing kernel Hilbert space (RKHS)H of continuous functions overX with
closed unit ballBH . It is well-known thatH can then be continuously embedded into the space
of continuous functionsC(X) equipped with the usual maximum-norm‖.‖∞. In order to avoid
constants we always assume that this embedding has norm 1, i.e.‖.‖∞ ≤ ‖.‖H . Furthermore,
L : Y × R → [0,∞) always denotes a continuous function which is convex in its second variable
such thatL(y, 0) ≤ 1. The functionsL will serve as loss functions and consequently let us recall
that the associatedL-risk of a measurable functionf : X → R is defined by

RL,P (f) = E(x,y)∼P L
(
y, f(x)

)
.

Note that the assumptionL(y, 0) ≤ 1 immediately givesRL,P (0) ≤ 1. Furthermore, the minimal
L-risk is denoted byR∗L,P , i.e.R∗L,P = inf{RL,P (f) | f : X → R measurable},and a function
attaining this infimum is denoted byf∗L,P . We always assume that such anf∗L,P exists.

The learning schemes we are mainly interested in are based on an optimization problem of the form

fP,λ := arg min
f∈H

(
λ‖f‖2H +RL,P (f)

)
, (1)

whereλ > 0. Note that if we identify a training setT = ((x1, y1), . . . , (xn, yn)) ∈ (X × Y )n with
its empirical measure, thenfT,λ denotes the empirical estimators of the above learning scheme.
Obviously, support vector machines (see e.g. [5]) and regularization networks (see e.g. [7]) are both
learning algorithms which fall into the above category. One way to describe the approximation error
of these learning schemes is theapproximation error function

a(λ) := λ‖fP,λ‖2H +RL,P (fP,λ)−R∗L,P , λ > 0,

which has been discussed in some detail in [10]. Furthermore in order to deal with the complexity
of the used RKHSs let us recall that for a subsetA ⊂ E of a Banach spaceE thecovering numbers
are defined by

N (A, ε,E) := min
{

n ≥ 1 : ∃x1, . . . , xn ∈ E with A ⊂
n⋃

i=1

(xi + εBE)
}

, ε > 0,

whereBE denotes the closed unit ball ofE. Given a finite sequenceT = ((x1, y1), . . . , (xn, yn)) ∈
(X × Y )n we write TX := (x1, . . . , xn). For our main results we are particularly interested in
covering numbers in the Hilbert spaceL2(TX) which consists of all equivalence classes of functions
f : X × Y → R and which is equipped with the norm

‖f‖L2(TX) :=
( 1

n

n∑
i=1

∣∣f(xi)
∣∣2) 1

2
. (2)

In other words,L2(TX) is aL2-space with respect to the empirical measure of(x1, . . . , xn).

Learning schemes of the form (1) typically produce functionsfP,λ with limλ→0 ‖fP,λ‖∞ = ∞
(see e.g. [10] for a precise statement). Unfortunately, this behaviour has a serious negative impact
on the learning rates when directly employing standard tool’s such as Hoeffding’s, Bernstein’s or
Talagrand’s inequality. On the other hand, when dealing with e.g. the hinge loss it is obvious that
clipping the functionfP,λ at −1 and1 does not worsen the corresponding risks. Following this
simple observation we will consider loss functionsL that satisfy theclipping condition

L(y, t) ≥
{

L(y, 1) if t ≥ 1
L(y,−1) if t ≤ −1 ,

(3)



for all y ∈ Y . Recall that this type of loss function was already considered in [4, 11], but the clipping
idea actually goes back to [1]. Moreover, it is elementary to check that most commonly used loss
functions including the hinge loss and the least squares loss satisfy (3). Given a functionf : X → R
we now define itsclipped versionf̂ : X → [−1, 1] by

f̂(x) :=


1 if f(x) > 1
f(x) if f(x) ∈ [−1, 1]
−1 if f(x) < −1 .

It is clear from (3) that we always haveL(y, f̂(x)) ≤ L(y, f(x)) and consequently we obtain
RL,P (f̂) ≤ RL,P (f) for all distributionsP . Finally, we also need the following Lipschitz condition

|L|1 := sup
y∈Y,−1≤t1,t2≤1

|L(y, t1)− L(y, t2)|
|t1 − t2|

≤ 2. (4)

With the help of these definitions we can now state our main result which establishes an oracle
inequality for clipped versions offT,λ:

Theorem 2.1 LetP be a distribution onX × Y and letL be a loss function which satisfies (3) and
(4). LetH be a RKHS of continuous functions onX. For a fixed elementf0 ∈ H we define

a(f0) := λ‖f0‖2H +RL,P (f0)−R∗L,P

B(f0) := sup
x∈X,y∈Y

∣∣L(y, f0(x))
∣∣ . (5)

In addition, we assume that we have a variance bound of the form

EP

(
L ◦ f̂ − L ◦ f∗L,P

)2 ≤ v
(
EP (L ◦ f̂ − L ◦ f∗L,P )

)ϑ
(6)

for constantsv ≥ 1, ϑ ∈ [0, 1] and all measurablef : X → R. Moreover, suppose thatH satisfies

sup
T∈(X×Y )n

logN
(
BH , ε, L2(TX)

)
≤ aε−2p , ε > 0, (7)

for some constantsp ∈ (0, 1) anda ≥ 1. For fixedλ > 0 let fT,λ ∈ H be a function that minimizes
f 7→ λ‖f‖2H +RL,T (f) up to someε > 0. Then there exists a constantKp,v depending only onp
andv such that for allτ ≥ 1 we have with probability not less than1− 3e−τ that

RL,P (f̂T,λ)−R∗L,P ≤
(

Kp,va

λpn

) 1
2−ϑ+p(ϑ−1)

+
Kp,va

λpn
+ 5

(32vτ

n

) 1
2−ϑ

+
140τ

n
+

14B(f0)τ
3n

+8a(f0) + 4ε. (8)

The above oracle inequality has some interesting consequences as the following examples illustrate.
We begin with an example that deals with afixedkernel:

Example 2.2 (Learning rates for single kernel)Assume that in Theorem 2.1 we have a Lipschitz
continuous loss function such as the hinge loss. In addition assume that the approximation error
function satisfiesa(λ) ≤ cλβ , λ > 0, for some constantsc > 0 andβ ∈ (0, 1]. Settingf0 := fP,λ

and optimizing (8) with respect toλ then shows that the corresponding SVM learns with raten−γ ,
where

γ := min
{ β

β
(
2− ϑ + p(ϑ− 1)

)
+ p

,
2β

β + 1

}
.

Recall that this learning rate has already been obtained in [11].

The next example investigates SVMs that use a Gaussian RBF kernel whose width may vary with
the sample size:

Example 2.3 (Classification with several Gaussian kernels)Let X be the unit ball inRd and
Y := {−1, 1}. Furthermore assume that we are interested in binary classification using the hinge



loss and the Gaussian RKHSsHσ that belong to the RBF kernelskσ(x1, x2) := e−σ2‖x1−x2‖2 with
widthσ > 0. If P has geometric noise exponentα ∈ (0,∞) in the sense of [9] then it was shown in
[9] that there exists a functionf0 ∈ Hσ with ‖f0‖∞ ≤ 1 and

aσ(f0) ≤ c
(
σdλ + σ−αd

)
, σ > 0, λ > 0,

wherec > 0 is a constant independent ofλ andσ. Moreover, [9, Thm. 2.1] shows thatHσ satisfies
(7) for all p ∈ (0, 1) with

a := cp,d,δσ
(1−p)(1+δ)d

whereδ > 0 can be arbitrarily chosen andcp,d,δ is a suitable constant. Now assume thatP has
Tsybakov noise exponentq ∈ [0,∞] in the sense of [9]. It was then shown in [9] that (6) is satisfied
for ϑ := q

q+1 . Minimizing (8) with respect toσ andλ and choosingp andδ sufficiently small then

yields that the corresponding SVM can learn with raten−γ+ε, where

γ :=
α(q + 1)

α(q + 2) + q + 1
,

andε > 0 can be chosen arbitrarily small. Note that these rates are superior to those obtained in
[9, Theorem 2.8].

In the above examples the optimal parametersλ andσ depend on the sample sizen but not on the
training samplesT . However, these optimal parameters require us to know certain characteristics
of the distribution such as the approximation exponentβ or the noise exponentsα and q. The
following example shows that the oracle inequality of Theorem 2.1 can be used to find these optimal
parameters in a data-dependent fashion which does not require any a-priori knowledge:

Example 2.4 In this example we assume that our training setT consists of2n samples. We write
T0 for the firstn samples andT1 for the lastn samples. LetfT0,σ,λ be the SVM solution using
a Gaussian kernel with widthσ. Moreover, letΣ ⊂ [1, n1/d) and Λ ⊂ (0, 1] be finite sets with
cardinality mΣ andmΛ, respectively. Under the assumptions of Example 2.3 the oracle inequality
(8) then shows that with probability not less than1− 3mΣmΛe−τ we have

RL,P (f̂T0,σ,λ)−R∗L,P ≤ Kd,q,α,ε

(( σd

λεn

) q+1
q+2−ε

+
( τ

n

) q+1
q+2

+ σdλ + σ−αd

)
simultaneouslyfor all σ ∈ Σ andλ ∈ Λ, whereε ∈ (0, 1] is arbitrarily but fixed andKd,q,α,ε is
a suitable constant. Now using a simple model selection approach (see e.g. Theorem 4.2) for the
second halfT1 of our training set we find that with probability not less than1− e−τ we have

RL,P (f̂T0,σ∗T1
,λ∗T1

)−R∗L,P ≤ C

(
τ + log(mΣmΛ)

n

) q+1
q+2

+C min
σ∈Σ,λ∈Λ

(( σd

λεn

) q+1
q+2−ε

+ σdλ + σ−αd

)
,

whereC is a constant only depending ond, q, α, andε, and (σ∗T1
, λ∗T1

) ∈ Σ × Λ is a pair that
minimizes the empirical riskRL,T1(.) overΣ× Λ.
Now assume thatΣn andΛn are1/n- and1/n2-nets of[1, n1/d) and(0, 1], respectively. Obviously,
we can chooseΣn andΛn such thatmΣn ≤ n2 andmΛn ≤ n2, respectively. With such parameter
sets it is then easy to check that we obtain exactly the rates we have found in Example 2.3, but
withoutknowing the noise exponentsα andq a-priori.

3 An oracle inequality for clipped penalized ERM

Theorem 2.1 is a consequence of a far more general oracle inequality on clipped penalized empirical
risk minimizers. Since this result is of its own interest we now present it together with its proof in
detail. To this end recall that a subroot is a nondecreasing functionϕ : [0,∞) → [0,∞) such
that ϕ(r)/

√
r is nonincreasing inr. Moreover, for a Rademacher sequenceσ := (σ1, . . . , σn)

with respect to the measureν and a functionh : Z → R we defineRσh : Zn → R by Rσh :=
n−1

(
σ1h(z1) + · · ·+ σnh(zn)

)
. Now the general oracle inequality is:



Theorem 3.1 Let P 6= ∅ be a set of (hyper)-parameters,F be a set of measurable functionsf :
X → R with 0 ∈ F , andΩ : P ×F → [0,∞] be a function. LetP be a distribution onX × Y and
L be a loss function which satisfies (3) and (4). For a fixed pair(p0, f0) ∈ P × F we define

aΩ(p0, f0) := Ω(p0, f0) +RL,P (f0)−R∗L,P .

Moreover, let us assume that the quantityB(f0) defined in (5) isfinite. In addition, we assume
that we have a variance bound of the form (6) for constantsv ≥ 1, ϑ ∈ [0, 1] and all measurable
f : X → R. Furthermore, suppose that there exists a subrootϕn with

ET∼P nEσ∼ν sup
(p,f)∈P×F

Ω(p,f)+EP (L◦f̂−L◦f∗L,P )≤r

∣∣Rσ(L ◦ f̂ − L ◦ f∗L,P )
∣∣ ≤ ϕn(r) , r > 0. (9)

Finally, let (pT,Ω, fT,Ω) be anε-approximate minimizer of(p, f) 7→ Ω(p, f) +RL,T (f). Then for
all τ ≥ 1 and all r satisfying

r ≥ max
{

120ϕn(r),
(32vτ

n

) 1
2−ϑ

,
28τ

n

}
(10)

we have with probability not less than1− 3e−τ that

Ω(pT,Ω, fT,Ω) +RL,P (f̂T,Ω)−R∗L,P ≤ 5r +
14B(f0)τ

3n
+ 8aΩ(p0, f0) + 4ε.

Proof: We writeB for B(f0). ForT ∈ (X × Y )n we now observeΩ(pT,Ω, fT,Ω) +RL,T (f̂T,Ω)−
Ω(p0, f0)−RL,T (f0) ≤ ε by the definition of(pT,Ω, fT,Ω), and hence we find

Ω(pT,Ω, fT,Ω)+RL,P (f̂T,Ω)−R∗L,P

≤ RL,P (f̂T,Ω)−RL,T (f̂T,Ω) +RL,T (f0)−RL,P (f0) + aΩ(p0, f0) + ε

= RL,P (f̂T,Ω)−RL,P (f∗L,P)−RL,T (f̂T,Ω)+RL,T (f∗L,P) (11)

+RL,T (f0)−RL,T (f̂0)−RL,P (f0)+RL,P (f̂0) (12)

+RL,T (f̂0)−RL,T (f∗L,P )−RL,P (f̂0)+RL,P (f∗L,P ) (13)

+aΩ(p0, f0) + ε .

Let us first estimate the term in line (12). To this end we writeh1 := L ◦ f0 − L ◦ f̂0. Then our
assumption onL guaranteesh1 ≥ 0, and since we also have‖h1‖∞ ≤ B, we find‖h1−EP h1‖∞ ≤
B. In addition, we obviously haveEP (h1−EP h1)2 ≤ EP h2

1 ≤ BEP h1. Consequently, Bernstein’s
inequality [6, Thm. 8.2] shows that with probability not less than1− e−τ we have

ET h1 − EP h1 <

√
2τB EP h1

n
+

2Bτ

3n
.

Now using
√

ab ≤ a
2 + b

2 we find
√

2τBEP h1 · n−
1
2 ≤ EP h1 + Bτ

2n , and consequently we have

Pn
(
T ∈ Zn : RL,T (f0)−RL,T (f̂0)−RL,P (f0)+RL,P (f̂0) < EP h1+

7Bτ

6n

)
≥ 1−e−τ . (14)

Let us now estimate the term in line (13). To this end we writeh2 := L◦f̂0−L◦f∗L,P . Then we have
‖h2‖∞ ≤ 3 and‖h2 − EP h2‖∞ ≤ 6. In addition, our variance bound givesEP (h2 − EP h2)2 ≤
EP h2

2 ≤ v(EP h2)ϑ, and consequently, Bernstein’s inequality shows that with probability not less
than1− e−τ we have

ET h2 − EP h2 <

√
2τv(EP h2)ϑ

n
+

4τ

n
.

Now, for q−1 + (q′)−1 = 1 the elementary inequalityab ≤ aqq−1 + bq′(q′)−1 holds, and hence for

q := 2
2−ϑ , q′ := 2

ϑ , a :=
√

21−ϑϑϑτv · n− 1
2 , andb :=

(
2EP h2

ϑ

)ϑ/2
we obtain√

2τv(EP h2)ϑ

n
≤

(
1− ϑ

2

)(21−ϑϑϑvτ

n

) 1
2−ϑ

+ EP h2.



Since elementary calculations show that
(
2−ϑϑϑ

) 1
2−ϑ ≤ 1 we obtain√

2τv(EP h2)ϑ

n
≤

(
1− ϑ

2

)(2vτ

n

) 1
2−ϑ

+ EP h2.

Therefore we have with probability not less than1− e−τ that

RL,T (f̂0)−RL,T (f∗L,P )−RL,P (f̂0)+RL,P (f∗L,P ) < EP h2 +
(
1− ϑ

2

)(2vτ

n

) 1
2−ϑ

+
4τ

n
. (15)

Let us finally estimate the term in line (11). To this end we writehf := L ◦ f̂ − L ◦ f∗L,P , f ∈ F .
Moreover, forr > 0 we define

Gr :=
{ EP hf − hf

Ω(p, f) + EP (hf ) + r
: (p, f) ∈ P × F

}
.

Then forgp,f := EP hf−hf

Ω(p,f)+EP (hf )+r ∈ Gr we haveEP gp,f = 0 and

‖gp,f‖∞ = sup
z∈Z

∣∣∣ EP hf − hf (z)
Ω(p, f) + EP (hf ) + r

∣∣∣ =
‖EP hf − hf‖∞

Ω(p, f) + EP (hf ) + r
≤ 6

r
.

In addition, the inequalityaϑb2−ϑ ≤ (a + b)2 and the variance bound assumption (6) implies that

EP g2
p,f ≤

EP h2
f

(EP (hf ) + r)2
≤

EP h2
f

r2−ϑ(EP hf )ϑ
≤ v

r2−ϑ
.

Now define

Φ(r) := ET∼P n sup
(p,f)∈P×F

EP hf − ET hf

Ω(p, f) + EP (hf ) + r
.

Standard symmetrization then yields

ET∼P n sup
(p,f)∈P×F

Ω(p,f)+EP (hf )≤r

|EP hf − ET hf | ≤ 2ET∼P nEσ∼ν sup
(p,f)∈P×F

Ω(p,f)+EP (hf )≤r

|Rσhf | ,

and hence Lemma 3.2 proved below together with (9) showsΦ(r) ≤ 10ϕn(r)r−1, r > 0. Therefore
applying Talagrand’s inequality in the version of [3] to the classGr we obtain

Pn

(
T ∈ Zn : sup

g∈Gr

ET g ≤ 30ϕn(r)
r

+

√
2τv

nr2−ϑ
+

7τ

nr

)
≥ 1− e−τ .

Let us defineεr := 30ϕn(r)
r +

(
2τv

nr2−ϑ

)1/2 + 7τ
nr . Then the above inequality gives with probability

not less than1− e−τ that for all(p, f) ∈ P × F we have

EP hf − ET hf ≤ εr ·
(
Ω(p, f) + EP hf

)
+ 30ϕn(r) +

√
2τvrϑ

n
+

7τ

n
,

and consequently we have with probability not less than1− e−τ that

RL,P (f̂T,Ω)−RL,P (f∗L,P )−RL,T (f̂T,Ω) +RL,T (f∗L,P )

≤ εr ·
(
Ω(pT,Ω, fT,Ω) +RL,P (f̂T,Ω)−RL,P (f∗L,P )

)
+ 30ϕn(r) +

√
2τvrϑ

n
+

7τ

n
. (16)

Now observe that for the functionsh1 andh2 which we defined when estimating (12) and (13) we
have

EP g + EP h = RL,P (f0)−R∗L,P , (17)

and hence we can combine our estimates (16), (14), and (15) of the terms (11), (12), and (13) to
obtain that with probability not less than1− 3e−τ we have

(1−εr)
(
Ω(pT,Ω, fT,Ω) +RL,P (f̂T,Ω)−R∗L,P

)
≤ 30ϕn(r)+

√
2τvrϑ

n
+ (1−ϑ

2
)
(2vτ

n

) 1
2−ϑ

+
(66+7B)τ

6n
+ aΩ(p0, f0)+RL,P (f0)−R∗L,P +ε.



In particular, forr satisfying the assumption (10) we have30ϕn(r)
r ≤ 1

4 ,
(

2τv
nr2−ϑ

)1/2 ≤ 1
4 , and

7τ
nr ≤

1
4 . This shows1− εr ≥ 1

4 , and hence we obtain with probability not less than1− 3e−τ that

Ω(pT,Ω, fT,Ω) +RL,P (f̂T,Ω)−R∗L,P ≤ 120ϕn(r) +

√
32τvrϑ

n
+ 2(2− ϑ)

(2vτ

n

) 1
2−ϑ

+
44τ

n

+
14Bτ

3n
+ 4aΩ(p0, f0) + 4

(
RL,P (f0)−R∗L,P

)
+ 4ε.

However we also have120ϕn(r) ≤ r,
(

32τvrϑ

n

)1/2 ≤ r, 44τ
n ≤ 5r

3 , and2(2 − ϑ)
(

2vτ
n

) 1
2−ϑ ≤

2(2− ϑ) r
4 ≤ r, and hence we find the assertion.

For the proof of Theorem 3.1 it remains to show the following lemma:

Lemma 3.2 LetP andF be as in Theorem 3.1. Furthermore, letW : F → R anda : P × F →
[0,∞). Define

Φ(r) := ET∼P n sup
f∈P×F

∣∣ET W (f)− EP W (f)
∣∣

a(p, f) + r

and suppose that there exists a subrootΨ such that

ET∼P n sup
(p,f)∈P×F

a(p,f)≤r

∣∣ET W (f)− EP W (f)
∣∣ ≤ Ψ(r) , r > 0.

Then we haveΦ(r) ≤ 5
r Ψ(r) for all r > 0.

Proof: Forx > 1, r > 0, andT ∈ (X × Y )n we obtain by a standard peeling approach that

sup
(p,f)∈P×F

|EP W (f)− ET W (f)|
a(p, f) + r

≤ sup
(p,f)∈P×F

a(p,f)≤r

|EP W (f)− ET W (f)|
a(p, f) + r

+
∞∑

i=0

sup
(p,f)∈P×F
a(p,f)≥rxi

a(p,f)≤rxi+1

|EP W (f)− ET W (f)|
a(p, f) + r

≤ sup
(p,f)∈P×F

a(p,f)≤r

|EP W (f)− ET W (f)|
r

+
∞∑

i=0

sup
(p,f)∈P×F
a(p,f)≥rxi

a(p,f)≤rxi+1

|EP W (f)− ET W (f)|
rxi + r

≤ 1
r

sup
(p,f)∈P×F

a(p,f)≤r

|EP W (f)− ET W (f)|+ 1
r

∞∑
i=0

1
xi + 1

sup
(p,f)∈P×F

a(p,f)≤rxi+1

|EP W (f)− ET W (f)|

=
1
r

(
Ψ(r) +

∞∑
i=0

Ψ(rxi+1)
xi + 1

)
.

However sinceΨ is a subroot we obtain thatΨ(rxi+1) ≤ x
i+1
2 Ψ(r) so that we obtain the assertion

by settingx := 4.

4 Proof of Theorem 2.1

Before we begin the proof of Theorem 2.1 let us state the following proposition which follows
directly from [8] (see also [9, Prop. 5.7]) together with simple considerations on covering numbers:

Proposition 4.1 LetF := H be a RKHS,P := {p0} be a singleton, andΩ(p0, f) := λ‖f‖2. If (7)
is satisfied then there exists a constantcp depending only onp such that (9) is satisfied for

ϕn(r) := cp max
{

v
1
2 (1−p)r

ϑ
2 (1−p)

( r

λ

) p
2
(a

n

) 1
2
,
( r

λ

) p
1+p

(a

n

) 1
1+p

}
.



Proof of Theorem 2.1:From the covering bound assumption we observe that Proposition 4.1 im-
plies we have the bound (9) withϕn(r) defined by the righthand side of Proposition 4.1 and therefore
Theorem 3.1 implies that Condition (10) becomes

r ≥ max
{

120cpv
1
2 (1−p)r

ϑ
2 (1−p)

( r

λ

) p
2
(a

n

) 1
2
, 120cp

( r

λ

) p
1+p

(a

n

) 1
1+p

,
(32vτ

n

) 1
2−ϑ

,
28τ

n

}
(18)

and solving with respect tor yields the conclusion.

Finally, for the parameter selection approach in Example 2.4 we need the following oracle inequality
for model selection:

Theorem 4.2 Let P be a distribution onX × Y and letL be a loss function which satisfies (3),
(4), and the variance bound (6). Furthermore, letF := {f1, . . . , fm} be a finite set of functions
mappingX into [−1, 1]. For T ∈ (X × Y )n we define

fT := arg min
f∈F

RL,T (f) .

Then there exists a universal constantK such that for allτ ≥ 1 we have with probability not less
than1− 3e−τ that

RL,P (fT )−R∗L,P ≤ 5
(K log m

n

) 1
2−ϑ

+ 5
(32vτ

n

) 1
2−ϑ

+
5K log m + 154τ

n

+8min
f∈F

(RL,P (f)−R∗L,P ) .

Proof: Since all functionsfi already map into[−1, 1] we do not have to consider the clipping oper-
ator. Forr > 0 we now defineFr := {f ∈ F : RL,P (f) − R∗L,P ≤ r}. Then the cardinality of
Fr is smaller than or equal tom and hence we haveN (L ◦ Fr − L ◦ f∗L,P , ε, L2(T )) ≤ m for all
ε > 0. Using the technique of [8] (cf. also [9, Prop. 5.7]) we hence obtain that (9) is satisfied for

ϕn(r) :=
c√
n

max
{√

v log m rϑ/2,
log m√

n

}
,

wherec is a universal constant. Applying Theorem 3.1 then yields the assertion.
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