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Abstract

The time-histogram method is a handy tool for capturing the instantaneous rate
of spike occurrence. In most of the neurophysiological literature, the bin size that
critically determines the goodness of the fit of the time-histogram to the underly-
ing rate has been selected by individual researchers in an unsystematic manner.
We propose an objective method for selecting the bin size of a time-histogram
from the spike data, so that the time-histogram best approximates the unknown
underlying rate. The resolution of the histogram increases, or the optimal bin size
decreases, with the number of spike sequences sampled. It is notable that the op-
timal bin size diverges if only a small number of experimental trials are available
from a moderately fluctuating rate process. In this case, any attempt to character-
ize the underlying spike rate will lead to spurious results. Given a paucity of data,
our method can also suggest how many more trials are needed until the set of data
can be analyzed with the required resolution.

1 Introduction

The rate of spike occurrence, or the firing rate, of a neuron can be captured by the (peri-stimulus)
time-histogram (PSTH) [1, 2], which is constructed easily as follows: Align spike sequences to the
onset of stimuli, divide time into discrete bins, count the number of spikes that enter each bin, and
divide the counts by the bin size and the number of sequences. The shape of a PSTH depends on the
choice of the bin size. With too large a bin size, one cannot represent the detailed time-dependent
rate, while with too small a bin size, the time-histogram fluctuates greatly and one cannot discern
the underlying spike rate. There exists an ideal bin size for estimating the spike rate for each set
of experimental data. This important parameter has mostly been selected subjectively by individual
researchers.

We devised a method of selecting the bin size objectively so that a PSTH best approximates the
underlying rate, which is unknown. In the course of our study, we found an interesting paper that
proposed an empirical method of choosing the histogram bin size for a probability density function
(Rudemo M, (1982)Scandinavian Journal of Statistics 9: 65-78 [3]). Although applicable to a Pois-
son point process, this theory appears to have rarely been applied to PSTHs. It would be preferable
to have a theory in accordance with the procedures of neurophysiological experiments in which a
stimulus is repeated to extract a signal from a neuron. Given a set of experimental data, we wish to



not only determine the optimal bin size, but also estimate howmany more experimental trials should
be performed in order to obtain a resolution we deem sufficient.

It was revealed by a theoretical analysis that the optimal bin size may diverge for a small number
of spike sequences derived from a moderately fluctuating rate [4]. This implies that any attempt to
characterize the underlying rate will lead to spurious results. The present method can indicate the
divergence of the optimal bin size only from the spike data. Even under such a condition, the present
method nevertheless provides an inference on the number of trails that need to be performed in order
to obtain a meaningful estimated rate.

2 Methods

We consider sequences of spikes repeatedly recorded from identical experimental trials. A recent
analysis revealed thatin vivo spike trains are not simply random, but possess inter-spike-interval
distributions intrinsic and specific to individual neurons [5, 6]. However, spikes accumulated from
a large number of spike trains recorded from a single neuron are, in the majority, mutually inde-
pendent. Being free from the intrinsic inter-spike-interval distributions of individual spike trains,
the accumulated spikes can be regarded as being derived repeatedly from Poisson processes of an
identical time-dependent rate [7, 8].

It would be natural to assess the goodness of the fit of the estimatorλ̂t to the underlying spike rate
λt over the total observation periodT by the mean integrated squared error (MISE),

MISE ≡
1

T

∫ T

0

E (λ̂t − λt)
2 dt, (1)

whereE refers to the expectation over different realization of point events, givenλt. We suggest
a method for minimizing the MISE with respect to the bin size∆. The difficulty of the present
problem comes from the fact that the underlying spike rateλt is not known.

2.1 Selection of the bin size

We choose the (bar-graph) PSTH as a way to estimate the rateλ̂t, and explore a method to select
the bin size of a PSTH that minimizes MISE in Eq.(1). A PSTH is constructed simply by counting
the number of spikes that belong to each bin. For an observation periodT , we obtainN = ⌊T/∆⌋
intervals. The number of spikes accumulated from alln sequences in theith interval is counted as
ki. The bar height at theith bin is given byki/n∆.

Given a bin of width∆, the expected height of a bar graph fort ∈ [0,∆] is the time-averaged rate,

θ =
1

∆

∫ ∆

0

λt dt. (2)

The total number of spikesk from n spike sequences that enter a bin of width∆ obeys a Poisson
distribution with the expected numbern∆θ,

p(k |n∆θ) =
(n∆θ)

k

k!
e−n∆θ . (3)

The unbiased estimator forθ is given aŝθ = k/(n∆), which is the empirical height of the bar graph
for t ∈ [0,∆].

By segmenting the total observation periodT into N intervals of size∆, the MISE defined in Eq.(1)
can be rewritten as

MISE =
1

∆

∫ ∆

0

1

N

N
∑

i=1

{

E ( θ̂i − λt+(i−1)∆ )2
}

dt, (4)

whereθ̂i ≡ ki/(n∆). Hereafter we denote the average over those segmented rateλt+(i−1)∆ as an
average over an ensemble of (segmented) rate functions{λt} defined in an interval oft ∈ [0,∆]:

MISE =
1

∆

∫ ∆

0

〈

E ( θ̂ − λt )2
〉

dt. (5)



Table 1: A method for bin size selection for a PSTH

(i) Divide the observation periodT intoN bins of width∆, and count
the number of spikeski from all n sequences that enter theith bin.

(ii) Construct the mean and variance of the number of spikes{ki} as,

k̄ ≡
1

N

N
∑

i=1

ki, andv ≡
1

N

N
∑

i=1

(ki − k̄)2.

(iii) Compute the cost function,

Cn(∆) =
2k̄ − v

(n∆)2
.

(iv) Repeat i through iii while changing the bin size∆ to search for∆∗

that minimizesCn(∆).

The expectationE now refers to the average over the spike count, orθ̂ = k/(n∆), given a rate
functionλt, or its mean value,θ. The MISE can be decomposed into two parts,

MISE =
1

∆

∫ ∆

0

〈

E ( θ̂ − θ + θ − λt)
2
〉

dt =
〈

E(θ̂ − θ)2
〉

+
1

∆

∫ ∆

0

〈

(λt − θ)
2
〉

dt. (6)

The first and second terms are respectively the stochastic fluctuation of the estimatorθ̂ around the
expected mean rateθ, and the temporal fluctuation ofλt around its meanθ over an interval of length
∆, averaged over the segments.

The second term of Eq.(6) can further be decomposed into two parts,

1

∆

∫ ∆

0

〈

(λt − 〈θ〉 + 〈θ〉 − θ)2
〉

dt =
1

∆

∫ ∆

0

〈

(λt − 〈θ〉)
2
〉

dt −
〈

(θ − 〈θ〉)
2
〉

. (7)

The first term in the rhs of Eq.(7) represents a mean squared fluctuation of the underlying rateλt

from the mean rate〈θ〉, and is independent of the bin size∆, because

1

∆

∫ ∆

0

〈

(λt − 〈θ〉)
2
〉

dt =
1

T

∫ T

0

(λt − 〈θ〉)
2

dt. (8)

We define a cost function by subtracting this term from the original MISE,

Cn(∆) ≡ MISE−
1

∆

∫ ∆

0

〈

(λt − 〈θ〉)
2
〉

dt

=
〈

E(θ̂ − θ)2
〉

−
〈

(θ − 〈θ〉)
2
〉

. (9)

This cost function corresponds to the “risk function” in the report by Rudemo, (Eq. 2.3), obtained by
direct decomposition of the MISE [3]. The second term in Eq.(9) represents the temporal fluctuation
of the expected mean rateθ for individual intervals of period∆. As the expected mean rate is not
an observable quantity, we must replace the fluctuation of the expected mean rate with that of the
observable estimator̂θ. Using the decomposition rule for an unbiased estimator (Eθ̂ = θ),

〈

E(θ̂ − 〈Eθ̂〉)2
〉

=
〈

E(θ̂ − θ + θ − 〈θ〉)2
〉

=
〈

E(θ̂ − θ)2
〉

+
〈

(θ − 〈θ〉)
2
〉

, (10)

the cost function is transformed into

Cn (∆) = 2
〈

E(θ̂ − θ)2
〉

−
〈

E(θ̂ − 〈Eθ̂〉)2
〉

. (11)



Due to the assumed Poisson nature of the point process, the number of spikesk counted in each bin
obeys a Poisson distribution: the variance ofk is equal to the mean. For the estimated rate defined
asθ̂ = k/(n∆), this variance-mean relation corresponds to

E(θ̂ − θ)2 =
1

n∆
Eθ̂. (12)

By incorporating Eq.(12) into Eq.(11), the cost function is given as a function of the estimatorθ̂,

Cn (∆) =
2

n∆

〈

Eθ̂
〉

−
〈

E(θ̂ − 〈Eθ̂〉)2
〉

. (13)

The optimal bin size is obtained by minimizing the cost functionCn(∆):

∆∗ ≡ arg min
∆

Cn(∆). (14)

By replacing the expectation of̂θ in Eq.(13) with the sample spike counts, the method is converted
into a user-friendly recipe summarized in Table 1.

2.2 Extrapolation of the cost function

With the method developed in the preceding subsection, we can determine the optimal bin size for
a given set of experimental data. In this section, we develop a method to estimate how the optimal
bin size decreases when more experimental trials are added to the data set.

Assume that we are in possession ofn spike sequences. The fluctuation of the expected mean rate
〈

(θ − 〈θ〉)2
〉

in Eq.(10) is replaced with the empirical fluctuation of the time-histogramθ̂n using the

decomposition rule for the unbiased estimatorθ̂n satisfyingEθ̂n = θ,
〈

E(θ̂n − 〈Eθ̂n〉)
2
〉

=
〈

E(θ̂n − θ + θ − 〈θ〉)2
〉

=
〈

E(θ̂n − θ)2
〉

+
〈

(θ − 〈θ〉)2
〉

. (15)

The expected cost function form sequences can be obtained by substituting the above equation into
Eq.(9), yielding

Cm (∆|n) =
〈

E(θ̂m − θ)2
〉

+
〈

E(θ̂n − θ)2
〉

−
〈

E(θ̂n − 〈Eθ̂n〉)
2
〉

. (16)

Using the variance-mean relation for the Poisson distribution, Eq.(12), and

E(θ̂m − θ)2 =
1

m∆
Eθ̂m =

1

m∆
Eθ̂n, (17)

we obtain

Cm (∆|n) =

(

1

m
−

1

n

)

1

∆

〈

Eθ̂n

〉

+ Cn (∆) , (18)

whereCn (∆) is the original cost function, Eq.(13), computed using the estimatorsθ̂n. By replacing
the expectation with sample spike count averages, the cost function form sequences can be extrap-
olated asCm (∆|n) with this formula, using the sample meank̄ and variancev of the numbers of
spikes, givenn sequences and the bin size∆. The extrapolation method is summarized in Table 2.

It may come to pass that the original cost functionCn(∆) computed forn spike sequences does not
have a minimum, or have a minimum at a bin size comparable to the observation periodT . In such a
case, with the method summarized in Table 2, one may estimate the critical number of sequencesnc

above which the cost function has a finite bin size∆∗, and consider carrying out more experiments
to obtain a reasonable rate estimation. In the case that the optimal bin size exhibits continuous
divergence, the cost function can be expanded as

Cn(∆) ∼ µ

(

1

n
−

1

nc

)

1

∆
+ u

1

∆2
, (19)

where we have introducednc andu, which are independent ofn. The optimal bin size undergoes
a phase transition from the vanishing1/∆∗ for n < nc to a finite1/∆∗ for n > nc. In this case,
the inverse optimal bin size is expanded in the vicinity ofnc as1/∆∗ ∝ (1/n − 1/nc). We can



Table 2: A method for extrapolating the cost function for a PSTH

(A) Construct the extrapolated cost function,

Cm (∆|n) =

(

1

m
−

1

n

)

k̄

n∆2
+ Cn(∆),

using the sample mean̄k and variancev of the number of spikes
obtained fromn sequences of spikes.

(B) Search for∆∗

m that minimizesCm (∆|n).

(C) Repeat A and B while changingm, and plot1/∆∗

m vs1/m to search for
the critical value1/m = 1/n̂c above which1/∆∗

m practically vanishes.

estimate the critical valuênc by applying this asymptotic relation to the set of∆̂∗

m estimated from
Cm(∆|n) for various values ofm:

1

∆∗

m

∝

(

1

m
−

1

n̂c

)

. (20)

It should be noted that there are cases that the optimal bin size exhibits discontinuous divergence
from a finite value. Even in such cases, the plot of{1/m, 1/∆∗} could be useful in exploring a
discontinuous transition from nonvanishing values of1/∆∗ to practically vanishing values.

2.3 Theoretical cost function

In this section, we obtain a “theoretical” cost function directly from a process with a known un-
derlying rate,λt, and compare it with the “empirical” cost function which can be evaluated without
knowing the rate process. Note that this theoretical cost function is not available in real experimental
conditions in which the underlying rate is not known.

The present estimator̂θ ≡ k/(n∆) is a uniformly minimum variance unbiased estimator (UMVUE)
of θ, which achieves the lower bound of the Cramér-Rao inequality [9, 10],

E(θ̂ − θ)2 =

[

−

∞
∑

k=0

p (k|θ)
∂2 log p (k|θ)

∂θ2

]

−1

=
θ

n∆
. (21)

Inserting this into Eq.(9), the cost function is represented as

Cn (∆) =
〈θ〉

n∆
−

〈

(θ − 〈θ〉)
2
〉

=
µ

n∆
−

1

∆2

∫ ∆

0

∫ ∆

0

φ (t1 − t2) dt1dt2, (22)

whereµ is the mean rate, andφ(t) is the autocorrelation function of the rate fluctuation,λt − µ.
Based on the symmetryφ(t) = φ(−t), the cost function can be rewritten as

Cn (∆) =
µ

n∆
−

1

∆2

∫ ∆

−∆

(∆ − |t|)φ(t) dt

≈
µ

n∆
−

1

∆

∫

∞

−∞

φ(t) dt +
1

∆2

∫

∞

−∞

|t|φ(t) dt, (23)

which can be identified with Eq.(19) with parameters given by

nc = µ

/
∫

∞

−∞

φ(t) dt , (24)

u =

∫

∞

−∞

|t|φ(t) dt. (25)
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Figure 1: A: (Dots): The empirical cost function,Cn(∆), computed from spike data according to
the method in Table 1. (Solid line): The “theoretical” cost function computed directly from the
underlying fluctuating rate, with Eq.(22). B: (Above): The underlying fluctuating rateλt. (Middle):
Spike sequences derived from the rate. (Below): Time-histograms made using three types of bin
sizes: too small, optimal, and too large. Model parameters: the number of sequencesn = 30; total
observation periodT = 30 [sec]; the mean rateµ = 30 [1/s]; the amplitude of rate fluctuation
σ = 10 [1/s]; time scale of rate fluctuationτ = 0.05 [s].

3 Results

Our first objective was to develop a method for selecting the ideal bin size using spike sequences
derived repeatedly from Poisson processes, all with a given identical rateλt. The MISE of the
PSTH from the underlying rate is minimized by minimizing the cost functionCn(∆). Figure 1A
displays the cost function computed with the method summarized in Table 1. This “empirical” cost
function is compared with the “theoretical” cost function Eq.(22) that is computed directly from
the underlying rateλt. The figure exhibits that the “empirical” cost function is consistent with the
“theoretical” cost function. The time-histogram constructed using the optimal bin size is compared
with those constructed using non-optimal bin sizes in Figs. 1B, demonstrating the effectiveness of
the present method of bin size selection.

We also tested a method for extrapolating the cost function. Figures 2A and B demonstrate
the extrapolated cost functions for several sequences with differing values ofm and the plot of
{1/m, 1/∆∗} for estimating the critical value1/m = 1/n̂c, above which1/∆∗ practically van-
ishes. Figure 2C depicts the critical numbern̂c estimated from the smaller or larger numbers of
spike sequencesn. The empirically estimated critical numbern̂c approximates the theoretically
predicted critical numbernc computed using Eq.(24). Note that the critical number is correctly es-
timated from the small number of sequences, with which the optimal bin size practically diverges
(n < nc).

4 Summary

We have developed a method for optimizing the bin size, so that the PSTH best represents the
(unknown) underlying spike rate. For a small number of spike sequences derived from a modestly
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Figure 2: A: Extrapolated cost functionsCm (∆|n) plotted against1/∆ for several numbers of se-
quencesm = 10, 20 and30 computed fromn = 10 sample sequences. B: The plot of{1/m, 1/∆∗}
used for estimating the critical value1/m = 1/n̂c, above which1/∆∗ practically vanishes. C: The
number of spike sequencesn used to obtain the extrapolated cost functionCm (∆|n) and an esti-
mated critical number̂nc. Model parameters: the number of sequencesn = 10; total observation
periodT = 30 [sec]; the mean rateµ = 30 [1/s]; the amplitude of rate fluctuationσ = 4 [1/s]; time
scale of rate fluctuationτ = 0.05 [s]. The theoretical critical number is computed with Eq.(24),
giving nc = 21.1 for the present underlying fluctuating rate. This theoreticalnc is depicted as the
horizontal dashed line.

fluctuating rate, the cost function does not have a minimum, implying the uselessness of the rate
estimation. Our method can nevertheless extrapolate the cost function for any number of spike
sequences, and suggest how many trials are needed in order to obtain a meaningful time-histogram
with the required accuracy. The suitability of the present method was demonstrated by application
to spike sequences generated by time-dependent Poisson processes.
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