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Abstract

In this paper, we propose a novel exemplar-based approach to extract dynamic
foreground regions from a changing background within a collection of images
or a video sequence. By using image segmentation as a pre-processing step, we
convert this traditional pixel-wise labeling problem into a lower-dimensional su-
pervised, binary labeling procedure on image segments. Our approach consists of
three steps. First, a set of random image patches are spatially and adaptively sam-
pled within each segment. Second, these sets of extracted samples are formed into
two “bags of patches” to model the foreground/background appearance, respec-
tively. We perform a novel bidirectional consistency check between new patches
from incoming frames and current “bags of patches” to reject outliers, control
model rigidity and make the model adaptive to new observations. Within each
bag, image patches are further partitioned and resampled to create an evolving
appearance model. Finally, the foreground/background decision over segments
in an image is formulated using an aggregation function defined on the similar-
ity measurements of sampled patches relative to the foreground and background
models. The essence of the algorithm is conceptually simple and can be easily im-
plemented within a few hundred lines of Matlab code. We evaluate and validate
the proposed approach by extensive real examples of the object-level image map-
ping and tracking within a variety of challenging environments. We also show that
it is straightforward to apply our problem formulation on non-rigid object tracking
with difficult surveillance videos.

1 Introduction
In this paper, we study the problem of object-level figure/ground segmentation in images and video
sequences. The core problem can be defined as follows: Given an imageX with known figure/ground
labelsL, infer the figure/ground labelsL′ of a new imageX′ closely related toX. For example, we
may want to extract a walking person in an image using the figure/ground mask of the same person
in another image of the same sequence. Our approach is based on training a classifier from the
appearance of a pixel and its surrounding context (i.e., an image patch centered at the pixel) to
recognize other similar pixels across images. To apply this process to a video sequence, we also
evolve the appearance model over time.

A key element of our approach is the use of a prior segmentation to reduce the complexity of the
segmentation process. As argued in [22], image segments are a more natural primitive for image
modeling than pixels. More specifically, an image segmentation provides a natural dimensional
reduction from the spatial resolution of the image to a much smaller set of spatially compact and
relatively homogeneous regions. We can then focus on representing the appearance characteristics
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of these regions. Borrowing a term from [22], we can think of each region as a ”superpixel” which
represents a complex connected spatial region of the image using a rich set of derived image fea-
tures. We can then consider how to classify each superpixel (i.e. image segment) as foreground or
background, and then project this classification back into the original image to create the pixel-level
foreground-background segmentation we are interested in.

The original superpixel representation in [22, 19, 18] is a feature vector created from the image seg-
ment’s color histogram [19], filter bank responses [22], oriented energy [18] and contourness [18].
These features are effective for image segmentation [18], or finding perceptually important bound-
aries from segmentation by supervised training [22]. However, as shown in [17], those parameters
do not work well for matching different classes of image regions from different images. Instead,
we propose using a set of spatially randomly sampled image patches as a non-parametric, statistical
superpixel representation. This non-parametric “bag of patches” model1 can be easily and robustly
evolved with the spatial-temporal appearance information from video, while maintaining the model
size (the number of image patches per bag) using adaptive sampling. Foreground/background clas-
sification is then posed as the problem of matching sets of random patches from the image with
these models. Ourmajor contributionsare demonstrating the effectiveness and computational sim-
plicity of a nonparametric random patch representation for semantically labelling superpixels and
a novel bidirectional consistency check and resampling strategy for robust foreground/background
appearance adaptation over time.

(a) (b) (c) (d)

Figure 1:(a) An example indoor image, (b) the segmentation result using [6] coded in random colors, (c)
the boundary pixels between segments shown in red, the image segments associated with the foreground, a
walking person here, shown in blue, (d) the associated foreground/background mask. Notice that the color
in (a) is not very saturated. This is a common fact in our indoor experiments without any specific lighting
controls.
We organize the paper as follows. We first address several image patch based representations and
the associated matching methods are described. In section 3, the algorithm used in our approach is
presented with details. We demonstrate the validity of the proposed approach using experiments on
real examples of the object-level figure/ground image mapping and non-rigid object tracking under
dynamic conditions from videos of different resolutions in section 4. Finally, we summarize the
contributions of the paper and discuss possible extensions and improvements.

2 Image Patch Representation and Matching
Building stable appearance representations of images patches is fundamental to our approach. There
are many derived features that can be used to represent the appearance of an image patch. In this
paper, we evaluate our algorithm based on: 1) an image patch’s raw RGB intensity vector, 2) mean
color vector, 3) color + texture descriptor (filter bank response or Haralick feature [17]), and 4) PCA,
LDA and NDA (Nonparametric Discriminant Analysis) features [7, 3] on the raw RGB vectors. For
completeness, we give a brief description of each of these techniques.

Texture descriptors: To compute texture descriptions, we first apply theLeung-Malik (LM) filter
bank [13] which consists of 48 isotropic and anisotropic filters with 6 directions, 3 scales and 2
phases. Thus each image patch is represented by a 48 component feature vector. TheHaralick
texture descriptor[10] was used for image classification in [17]. Haralick features are derived from
the Gray Level Co-occurrence Matrix, which is a tabulation of how often different combinations
of pixel brightness values (grey levels) occur in an image region. We selected 5 out of 14 texture

1Highly distinctive local features [16] are not the adequate substitutes for image patches. Their spatial
sparseness nature limits their representativity within each individual image segment, especially for the nonrigid,
nonstructural and flexible foreground/background appearance.



descriptors [10] including dissimilarity, Angular Second Moment (ASM), mean, standard deviation
(STD) and correlation. For details, refer to [10, 17].

Dimension reduction representations: The Principal Component Analysis(PCA) algorithm is
used to reduce the dimensionality of the raw color intensity vectors of image patches. PCA makes
no prior assumptions about the labels of data. However, recall that we construct the ”bag of patches”
appearance model from sets of labelled image patches. This supervised information can be used to
project the bags of patches into a subspace where they are best separated usingLinear discrimi-
nant Analysis(LDA) or Nonparametric Discriminant Analysis(NDA) algorithm [7, 3] by assuming
Gaussian or Non-Gaussian class-specific distributions.

Patch matching: After image patches are represented using one of the above methods, we must
match them against the foreground/background models. There are 2 methods investigated in this
paper: the nearest neighbor matching using Euclidean distance and KDE (Kernel Density Estima-
tion) [12] in PCA/NDA subspaces. For nearest-neighbor matching, we find, for each patchp, its
nearest neighborspF

n , pB
n in foreground/background bags, and then computedF

p =‖ p − pF
n ‖,

dB
p =‖ p − pB

n ‖. On the other hand, an image patch’s matching scoresmF
p andmB

p are evaluated
as probability density values from the KDE functionsKDE(p, ΩF ) andKDE(p, ΩB) whereΩF |B

are bags of patch models. Then the segmentation-level classification is performed as section 3.2.

3 Algorithms

We briefly summarize our labeling algorithm as follows. We assume that each image of interest
has been segmented into spatial regions. A set of random image patches are spatially and adap-
tively sampled within each segment. These sets of extracted samples are formed into two “bags of
patches” to model the foreground/background appearance respectively. The foreground/background
decision for any segment in a new image is computed using one of two aggregation functions on
the appearance similarities from its inside image patches to the foreground and background models.
Finally, for videos, within each bag, new patches from new frames are integrated through a robust
bidirectional consistency check process and all image patches are then partitioned and resampled to
create an evolving appearance model. As described below, this process prune classification inaccu-
racies in the nonparametric image patch representations and adapts them towards current changes in
foreground/background appearances for videos. We describe each of these steps for video tracking
of foreground/background segments in more detail below, and for image matching, which we treat
as a special case by simply omitting step 3 and 4 in Figure 2.

Non-parametric Patch Appearance Modelling-Matching Algorithm
inputs: Pre-segmented ImagesXt, t = 1, 2, ..., T ; LabelL1

outputs:LabelsLt, t = 2, ..., T ; 2 “bags of patches” appearance model for foreground/backgroundΩ
F |B
T

1. Sample segmentation-adaptive random image patches{P1} from imageX1.

2. Construct 2 new bags of patchesΩ
F |B
1

for foreground/background using patches{P1} and label
L1; sett = 1.

3. t = t + 1; Sample segmentation-adaptive random image patches{Pt} from imageXt; match
{Pt} with Ω

F |B
t−1

and classify segments ofXt to generate labelLt by aggregation.
4. Classify and reject ambiguous patch samples, probable outliers and redundant appearance patch

samples from new extracted image patches{Pt} againstΩF |B
t−1

; Then integrate the filtered{Pt}

into Ω
F |B
t−1

and evaluate the probability of survivalps for each patch insideΩF |B
t−1

against the
original unprocessed{Pt} (Bidirectional Consistency Check).

5. Perform the random partition and resampling process according to the normalized product of
probability of survivalps and partition-wise sampling rateγ′ insideΩ

F |B
t−1

to generateΩF |B
t .

6. If t = T , outputLt, t = 2, ..., T andΩ
F |B
T ; exit. If t < T , go to (3).

Figure 2:Non-parametric Patch Appearance Modelling-Matching Algorithm



Figure 3: Left: Segment adaptive random patch sampling from an image with known figure/ground labels.
Green dots are samples for background; dark brown dots are samples for foreground.Right: Segment adaptive
random patch sampling from a new image for figure/ground classification, shown as blue dots.

3.1 Sample Random Image Patches

We first employ an image segmentation algorithm2 [6] to pre-segment all the images or video frames
in our experiments. A typical segmentation result is shown in Figure 1. We useXt, t = 1, 2, ..., T
to represent a sequence of video frames. Given an image segment, we formulate its representation
as a distribution on the appearance variation over all possible extracted image patches inside the
segment. To keep this representation to a manageable size, we approximate this distribution by
sampling a random subset of patches.

We denote an image segment asSi with SF
i for a foreground segment, andSB

i for a background
segment, wherei is the index of the (foreground/background)image segment within an image. Ac-
cordingly,Pi, PF

i andPB
i represent a set of random image patches sampled fromSi, SF

i andSB
i

respectively. The cardinalityNi of an image segmentSi generated by [6] typically ranges from 50
to thousands. However small or large superpixels are expected to have roughly the same amount
of uniformity. Therefore the sampling rateγi of Si, defined asγi = size(Pi)/Ni, should decrease
with increasingNi. For simplicity, we keepγi as a constant for all superpixels, unlessNi is above a
predefined thresholdτ , (typically2500 ∼ 3000), above whichsize(Pi) is held fixed. This sampling
adaptivity is illustrated in Figure 3. Notice that large image segments have much more sparsely
sampled patches than small image segments. From our experiments, this adaptive spatial sampling
strategy is sufficient to represent image segments of different sizes.

3.2 Label Segments by Aggregating Over Random Patches

For an image segmentSi from a new frame to be classified, we again first sample a set of random
patchesPi as its representative set of appearance samples. For each patchp ∈ Pi, we calculate its
distancesdF

p , dB
p or matching scoresmB

p , mF
p towards the foreground and background appearance

models respectively as described in Section 2.

The decision of assigningSi to foreground or background, is an aggregating process over all
{dF

p , dB
p } or {mB

p ; mF
p } wherep ∈ Pi. SincePi is considered as a set of i.i.d. samples of the

appearance distribution ofSi, we use the average of{dF
p , dB

p } or {mB
p ; mF

p } (ie. first-order statis-
tics) as its distancesDF

Pi
, DB

Pi
or fitness valuesMF

Pi
, MB

Pi
with the foreground/background model.

In terms of distances{dF
p , dB

p }, DF
Pi

= meanp∈Pi
(dF

p ) andDB
Pi

= meanp∈Pi
(dB

p ). Then the
segment’s foreground/background fitness is set as the inverse of the distances:MF

Pi
= 1/DF

Pi

andMB
Pi

= 1/DB
Pi

. In terms of KDE matching scores{mB
p ; mF

p }, MF
Pi

= meanp∈Pi
(mF

p ) and
MB

Pi
= meanp∈Pi

(mB
p ). Finally,Si is classified as foreground ifMF

Pi
> MB

Pi
, and vice versa. The

Medianrobust operator can also be employed in our experiments, without noticeable difference in
performance. Another choice is to classify eachp ∈ Pi from mB

p andmF
p , then vote the majority

foreground/background decision forSi. The performance is similar withmeanandmedian.

2Because we are not focused on image segmentation algorithms, we choose Felzenszwalb’s segmentation
code which generates good results and is publicly available at http://people.cs.uchicago.edu/∼pff/segment/.



3.3 Construct a Robust Online Nonparametric Foreground/Background Appearance Model
with Temporal Adaptation

From sets of random image patches extracted from superpixels with known figure/ground labels, 2
foreground/background “bags of patches” are composed. The bags are the non-parametric form of
the foreground/background appearance distributions. When we intend to “track” the figure/ground
model sequentially though a sequence, these models need to be updated by integrating new image
patches extracted from new video frames. However the size (the number of patches) of the bag will
be unacceptably large if we do not also remove the some redundant information over time. More
importantly, imperfect segmentation results from [6] can cause inaccurate segmentation level fig-
ure/ground labels. For robust image patch level appearance modeling ofΩt, we propose a novel
bidirectional consistency check and resampling strategy to tackle various noise and labelling uncer-
tainties.

More precisely, we classify new extracted image patches{Pt} as {PF
t } or {PB

t } according to

Ω
F |B
t−1

; and reject ambiguous patch samples whose distancesdF
p , dB

p towards respectiveΩF |B
t−1

have
no good contrast (simply, the ratio betweendF

p anddB
p falls into the range of0.8 to 1/0.8). We

further sort the distance list of the newly classified foreground patches{PF
t } to ΩF

t−1
, filter out

image patches on the top of the list which have too large distances and are probably to be outliers,
and ones from the bottom of the list which have too small distances and contain probably redundant
appearances compared withΩF

t−1

3. We perform the same process with{PB
t } according toΩB

t−1
.

Then the filtered{Pt} are integrated intoΩF |B
t−1

to formΩ
F ′|B′

t−1
, and we evaluate the probability of

survivalps for each patch insideΩF ′|B′

t−1
against the original unprocessed{Pt} with their labels4.

Next, we cluster all image patches ofΩ
F ′|B′

t−1
into k partitions [8], and randomly resample image

patches within each partition. This is roughly equivalent to finding the modes of an arbitrary distri-
bution and sampling for each mode. Ideally, the resampling rateγ′ should decrease with increasing
partition size, similar to the segment-wise sampling rateγ. For simplicity, we defineγ′ as a constant
value for all partitions, unless setting a thresholdτ ′ to be the minimal required size5 of partitions af-
ter resampling. If we perform resampling directly over patches without partitioning, some modes of
the appearance distribution may be mistakenly removed. This strategy represents all partitions with
sufficient number of image patches, regardless of their different sizes. In all, we resample image
patches ofΩF |B

t−1
, according to the normalized product of probability of survivalps and partition-

wise sampling rateγ′, to generateΩF |B
t . By approximately fixing the expected bag model size, the

number of image patches extracted from a certain frameXt in the bag decays exponentially in time.

The problem of partitioning image patches in the bag can be formulated as the NP-hardk-center
problem. The definition ofk-centeris as follows: given a data set ofn points and a predefined
cluster numberk, find a partition of the points intok subgroupsP1,P2, ...,Pk and the data cen-
tersc1, c2, ..., ck, to minimize the maximum radius of clustersmaxi maxp∈Pi

‖ p − ci ‖, wherei
is the index of clusters. Gonzalez [8] proposed an efficient greedy algorithm,farthest-point clus-
tering, which proved to give an approximation factor of 2 of the optimum. The algorithm oper-
ates as follows: pick a random pointp1 as the first cluster center and add it to the center setC;
for iterationsi = 2, ..., k, find the pointpi with the farthest distance to the current center setC:
di(pi, C) = minc∈C ‖ pi − c ‖ and addpi to setC; finally assign data points to its nearest cen-
ter and recompute the means of clusters inC. Compared with the popular k-means algorithm, this
algorithm is computationally efficient and theoretically bounded6. In this paper, we employ the Eu-

3Simply, we reject patches with distancesdF

pF
t

that are larger thanmean(dF

pF
t

) + λ ∗ std(dF

pF
t

) or smaller

thanmean(dF

pF
t

)−λ∗std(dF

pF
t

) whereλ controls the range of accepting patch samples ofΩ
F |B
t−1

, calledmodel

rigidity.
4For example, we compute the distance of each patch inΩF ′

t−1 to {PF
t }, and covert them as surviving

probabilities using a exponential function over negative covariance normalized distances. Patches with smaller
distances have higher survival chances during resampling; and vice versa. We perform the same process with
ΩB′

t−1 according to{PB
t }.

5All image patches from partitions that are already smaller thanτ ′ are kept during resampling.
6The random initialization of allk centers and the local iterative smoothing process in k-means, which is

time-consuming in high dimensional space and possibly converges to undesirable local minimum, are avoided.



clidean distance between an image patch and a cluster center, using the raw RGB intensity vector or
the feature representations discussed in section 2.

4 Experiments
We have evaluated the image patch representations described in Section 2 for figure/ground mapping
between pairs of image on video sequences taken with both static and moving cameras. Here we
summarize our results.

4.1 Evaluation on Object-level Figure/Ground Image Mapping
We first evaluate our algorithm on object-level figure/ground mapping between pairs of images under
eight configurations of different image patch representations and matching criteria. They are listed
as follows: the nearest neighbor distance matching on the image patch’s mean color vector (MCV);
raw color intensity vector of regular patch scanning (RCV) or segment-adaptive patch sampling over
image (SCV); color + filter bank response (CFB); color + Haralick texture descriptor (CHA); PCA
feature vector (PCA); NDA feature vector (NDA) and kernel density evaluation on PCA features
(KDE). In general,8000 ∼ 12000 random patches are sampled per image. There is no apparent
difference on classification accuracy for the patch size ranging from 9 to 15 pixels and the sample
rate from 0.02 to 0.10. The PCA/NDA feature vector has 20 dimensions, and KDE is evaluated on
the first3 ∼ 6 PCA features.

Because the foreground figure has fewer of pixels than background, we conservatively measure the
classification accuracy from the foreground’s detection precision and recall on pixels. Precision
is the ratio of the number of correctly detected foreground pixels to the total number of detected
foreground pixels; recall is is the ratio of the number of correctly detected foreground pixels to the
total number of foreground pixels in the image. The patch size is 11 by 11 pixels, and the segment-
wise patch sampling rateγ is fixed as 0.06, unless stated otherwise. Using 40 pairs of (720 ×
480) images with the labelled figure/ground segmentation, we compare their average classification
accuracies in Tables 1.

MCV RCV SCV CFB CHA PCA NDA KDE
0.46 0.81 0.97 0.92 0.89 0.93 0.96 0.69
0.28 0.89 0.95 0.85 0.81 0.85 0.87 0.98

Table 1: Evaluation on classification accuracy (ratio). The first row is precision; the second row is
recall.

For figure/ground extraction accuracy,SCVhas the best classification ratio using the raw color inten-
sity vector without any dimension reduction.MCV has the worst accuracy, which shows that pixel-
color leads to poor separability between figure and ground in our data set. Four feature based rep-
resentations,CFB, CHA, PCA, NDAwith reduced dimensions, have similar performance, whereas
NDA is slightly better than the others.KDE tends to be more biased towards the foreground class
because background usually has a wider, flatter density distribution. The superiority ofSCVover
RCVproves that our segment-wise random patch sampling strategy is more effective at classifying
image segments than regularly scanning the image, even with more samples. As shown in Figure 4
(b), some small or irregularly-shaped image segments do not have enough patch samples to produce
stable classifications.

(a)MCV (b) RCV (c) SCV (d) CFB (e)CHA (f) PCA (g) NDA (h) KDE

Figure 4:An example of evaluation on object-level figure/ground image mapping. The labeled figure image
segments are coded in blue.



4.2 Figure/Ground Segmentation Tracking with a Moving Camera
From Figure 4 (h), we seeKDE tends to produce some false positives for the foreground. However
the problem can be effectively tackled by multiplying the appearance KDE by the spatial prior
which is also formulated as a KDE function of image patch coordinates. By considering videos with
complex appearance-changing figure/ground, imperfect segmentation results [6] are not completely
avoidable which can cause superpixel based figure/ground labelling errors. However ourrobust
bidirectional consistency check and resampling strategy, as shown below, enables to successfully
track the dynamic figure/ground segmentations in challenging scenarios with outlier rejection, model
rigidity control and temporal adaptation (as described in section 3.3).

Karsten.avishows a person walking in an uncontrolled indoor environment while tracked with a
handheld camera. After we manually label the frame 1, the foreground/background appearance
model starts to develop, classify new frames and get updated online. Eight Example tracking frames
are shown in Figure 5. Notice that the significant non-rigid deformations and large scale changes of
the walking person, while the original background is completely substituted after the subject turned
his way. In frame 258, we manually eliminate some false positives of the figure. The reason for
this failure is that some image regions which were behind the subject begin to appear when the
person is walking from left to the center of image (starting from frame 220). Compared to the online
foreground/backgroundappearance models by then, these newly appearing image regions have quite
different appearance from both the foreground and the background. Therefore the foreground’s
spatial prior dominates the classification. We leave this issue for future work.

(a) 12# (b) 91# (c) 155# (d) 180# (e) 221# (f) 257# (g) 308# (h) 329#

Figure 5:Eight example frames (720 by 480 pixels) from the video sequenceKarsten.aviof 330 frames. The
video is captured using a handheld Panasonic PV-GS120 in standard NTSC format. Notice that the signifi-
cant non-rigid deformations and large scale changes of the walking person, while the original background is
completely substituted after the subject turned his way. The red pixels are on the boundary of segments; the
tracked image segments associated with the foreground walking person is coded in blue.

4.3 Non-rigid Object Tracking from Surveillance Videos
We can also apply our nonparametric treatment of dynamic random patches in Figure 2 into track-
ing non-rigid interested objects from surveillance videos. The difficult is that surveillance cameras
normally capture small non-rigid figures, such as a walking person or running car, in low contrast
and low resolution format. Thus to adapt our method to solve this problem, we make the follow-
ing modifications. Because our task changes to localizing figure object automatically overtime, we
can simply model figure/ground regions using rectangles and therefore no pre-segmentation [6] is
needed. Random figure/ground patches are then extracted from the image regions within these two
rectangles. Using two sets of random image patches, we train an online classifier for figure/ground
classes at each time step, generate a figure appearance confidence map of classification for the next
frame and, similarly to [1], apply mean shift [4] to find the next object location by mode seeking.
In our problem solution, the temporal evolution of dynamic image patch appearance models are
executed by the bidirectional consistency check and resampling described in section 3.3. Whereas
[1] uses boosting for both temporal appearance model updating and classification, our online bi-
nary classification training can employ any off-the-shelf classifiers, such as k-Nearest Neighbors
(KNN), support vector machine (SVM). Our results are favorably competitive to the state-of-the-art
algorithms [1, 9], even under more challenging scenario.

5 Conclusion and Discussion
Although quite simple both conceptually and computationally, our algorithm of performing dy-
namic foreground-background extraction in images and videos using non-parametric appearance



models produces very promising and reliable results in a wide variety of circumstances. For track-
ing figure/ground segments, to our best knowledge, it is the first attempt to solve this difficult ”video
matting” problem [15, 25] by robust and automatic learning. For surveillance video tracking, our
results are very competitive with the state-of-art [1, 9] under even more challenging conditions.

Our approach does not depend on an image segmentation algorithm that totally respects the bound-
aries of the foreground object. Our novel bidirectional consistency check and resampling process
has been demonstrated to be effectively robust and adaptive. We leave the explorations on super-
vised dimension reduction and density modeling techniques on image patch sets, optimal random
patch sampling strategy, and self-tuned optimal image patch size searching as our future work.

In this paper, we extract foreground/background by classifying on individual image segments. It
might improve the figure/ground segmentation accuracy by modeling their spatial pairwise relation-
ships as well. This problem can be further solved using generative or discriminative random field
(MRF/DRF) model or the boosting method on logistic classifiers [11]. In this paper, we focus on
learning binary dynamic appearance models by assuming figure/ground are somewhat distribution-
wise separatable. Other cues, as object shape regularization and motion dynamics for tracking, can
be combined to improve performance.
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