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Abstract

We present a probabilistic model applied to the fMRI video rating prediction task
of the Pittsburgh Brain Activity Interpretation Competition (PBAIC) [2]. Our
goal is to predict a time series of subjective, semantic ratings of a movie given
functional MRI data acquired during viewing by three subjects. Our method uses
conditionally trained Gaussian Markov random fields, which model both the rela-
tionships between the subjects’ fMRI voxel measurements and the ratings, as well
as the dependencies of the ratings across time steps and between subjects. We also
employed non-traditional methods for feature selection and regularization that ex-
ploit the spatial structure of voxel activity in the brain. The model displayed good
performance in predicting the scored ratings for the three subjects in test data sets,
and a variant of this model was the third place entrant to the 2006 PBAIC.

1 Introduction

In functional Magnetic Resonance Imaging, orfMRI, an MR scanner measures a physiological sig-
nal known to be correlated with neural activity, the blood-oxygenation-level dependent (BOLD)
signal [12]. Functional scans can be taken during a task of interest, such as the subject viewing
images or reading text, thus providing a glimpse of how brain activity changes in response to cer-
tain stimuli and tasks. An fMRI session produces scans of the brain volume across time, obtaining
BOLD measurements from thousands of small sub-volumes, orvoxels at each time step.

Much of the current fMRI research focuses on the goal of identifying brain regions activated in
response to some task or stimulus (e.g., [7]). The fMRI signal is typically averaged over many
repeated stimulus presentations, multiple time points and even different subjects, in order to find
brain regions with statistically significant response. However, in recent years, there has been growing
interest in an alternative task, whose goal is to develop models which predict stimuli from functional
data, in effect demonstrating the ability to ‘read’ information from the scans. For instance, Tong
et al. [9] demonstrated the ability to predict the orientation of edges in a subject’s visual field from
functional scans of visual cortex, and Mitchell et al. [13] successfully applied machine learning
techniques to a predict a variety of stimuli, such as the semantic category of words presented to a
subject. Such prediction work has demonstrated that, despite the relatively low spatial resolution
of fMRI, functional data contains surprisingly reliable and detailed signal [9, 6, 13], even on time
scales as short as a few seconds. Going beyond identifying the location of responsive regions, these
models begin to demonstratehow the brain encodes states and stimuli [3], often capturing distributed
patterns of activation across multiple brain regions simultaneously. This line of research could also
eventually provide a mechanism for accurately tracking cognitive processes in a non-invasive way.

Another recent innovation is the use of long and rich stimuli in fMRI experiments, such as a com-
mercial movie [8], rather than the traditional controlled, repeating simple stimuli. These experiments



present more difficulty in analysis, but more closely mirror natural stimulation of the brain, which
may evoke different brain activity patterns from traditional experiments.

The recentPittsburgh Brain Activity Interpretation Competition [2] (PBAIC), featuredboth the use
of complex stimuli and a prediction task, presenting a unique data set for predicting subjective
experiences given functional MRI sessions. Functional scans from three subjects were taken while
the subjects watched three video segments. Thus, during the scan, subjects were exposed to rich
stimuli including rapidly changing images of people, meaningful sounds such as dialog and music,
and even emotional stimuli, all overlapping in time. Each subject also re-viewed each movie multiple
times, to rate over a dozen characteristics of the videos over time, such asAmusement, presence
of Faces or Body Parts, Language, andMusic. Given this data set, the goal was to predict these
real-valued subjective ratings for each subject based only on the fMRI scans.

In this paper, we present an approach to the PBAIC problem, based on the application of machine
learning methods within the framework of probabilistic graphical models. The structured probabilis-
tic framework allowed us to represent many relevant relationships in the data, including evolution of
subjective ratings over time, the likelihood of different subjects rating experiences similarly, and of
course the relationship between voxels and ratings. We also explored novel feature selection meth-
ods, which exploit the spatial characteristics of brain activity. In particular, we incorporate a bias in
favor of jointly selecting nearby voxels.

We demonstrate the performance of our model by training from a subset of the movie sessions and
predicting ratings for held out movies. An earlier variant of our model was the third place entrant to
the 2006 PBAIC out of forty entries. We demonstrated very good performance in predicting many
of the ratings, suggesting that probabilistic modeling for the fMRI domain is a promising approach.
An analysis of our learned models, in particular our feature selection results, also provides some
insight into the regions of the brain activated by different stimuli and states.

2 Probabilistic Model

Our system for prediction from fMRI data is based on a dynamic, undirected graphical probabilistic
model, which defines a large structured conditional Gaussian over time and subjects. The backbone
of the model is a conditional linear Gaussian model, capturing the dependence of ratings on voxel
measurements. We then extend the basic model to incorporate dependencies between labels across
time and between subjects.

The variables in our model are voxel activations and ratings. For each subjects and each time
point t, we have a collection of ratingsRs(·, t), with Rs(j, t) representing thejth rating type (for
instanceLanguage) for s at timet. Note that the rating sequences given by the subjects are actually
convolved with a standard hemodynamic response function before use, to account for the delay
inherent in the BOLD signal response [4]. For eachs andt, we also have the voxel activitiesVs(·, t).
Both voxels and ratings are continuous variables. For mathematical convenience, we recenter the
data such that all variables (ratings and voxels) have mean0.

Each ratingRs(j, t) is modeled as a linear Gaussian random variable, dependent only on voxels from
that subject’s brain as features. We can expressRs(j, t) ∼ N (ws(j)

T Vs(·, t), σ
2
s). We assume that

the dependence of the rating on the voxels is time-invariant, so that the same parametersws(j) and
σs are used for every time point. Importantly, however, each rating should not depend onall of
the subject’s voxels, as this is neither biologically likely nor statistically plausible given the large
number of voxels. In Sec. 3.1 we explore a variety of feature selection and regularization methods
relevant to this problem.

The linear regression model forms a component in a larger model that accounts for dependencies
among labels across time and across subjects. This model takes the form of a (dynamic) Gaussian
Markov Random Field (GMRF) [15, 11]. A GMRF is an undirected graphical probabilistic model
that expresses a multi-dimensional joint Gaussian distribution in a reduced parameter space by mak-
ing use of conditional independences. Specifically, we employ a standard representation of a GMRF
derived from the inverse covariance matrix, orprecision matrix Q = Σ−1 of the underlying Gaus-
sian distribution: ForX = (X1, . . . , Xn), a zero-mean joint Gaussian distribution overX can be
written asP (X) ∝ exp(− 1

2
X

T QX). The precision matrix maps directly to a Markov network
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Figure 1: GMRF model for one rating,R·(j, t), over three subjects and three time steps.

representation, asQ(i, j) = 0 exactly whenXi is independent ofXj given the remaining variables,
corresponding to the absence of an edge betweenXi andXj in the Markov network.

In our setting, we want to express a conditional linear Gaussian of the ratings given the voxels. A
distributionP (X | Y ) can also be parametrized using the joint precision matrix:

P (X | Y ) =
1

Z(Y )

∏

i

exp

(

−
1

2
QXX(i, i)X2

i

)

∏

i,j∈EX

exp (−QXX(i, j)XiXj)

∏

i,k∈EY

exp (−QXY (i, k)XiYk),

whereEX is the set of edges between nodes inX, andEY represents edges fromY to X.

Our particular GMRF is a joint probabilistic model that encompasses, for a particular rating typej,
the value of the ratingRs(j, t) for all of the subjectss across all time pointst. Our temporal model
assumes a stationary distribution, so that both node and edge potentials are invariant across time.
This means that several entries in the full precision matrixQ are tied to a single free parameter.
We will treat each rating type separately. Thus, the variables in the model are: all of the voxel
measurementsVs(l, t), for all s, t and voxelsl selected to be relevant to ratingj; and all of the ratings
Rs(j, t) (for all s, t). As we discuss below, the model is trained conditionally, and therefore encodes
a joint distribution over the rating variables,conditional on all of the voxel measurements. Thus,
there will be no free parameters corresponding to the voxel nodes due to the use of a conditional
model, while rating nodesRs(j, ·) have an associated node potential parameterQnode(s, j).

Each rating nodeRs(j, t) has edges connecting it to a subset of relevant voxels fromVs(·, t) at
the same time slice. The set of voxels can vary for different ratings or subjects, but is consistent
across time. The precision matrix entryQvoxel(s, j, v) parametrizes the edge from voxelv to rating
j. To encode the dependencies between the rating at different time points, our dynamic model
includes edges between each ratingRs(j, t) and the previous and following ratings,Rs(j, t − 1)
andRs(j, t + 1). The corresponding edge parameters areQtime(s, j). We also use the GMRF to
encode the dependencies between the ratings of different subjects, in a way that does not assume
that the subjects gave identical ratings, by introducing appropriate edges in the model. Thus, we also
have an edge betweenRs(j, t) andRs′(j, t) for all subject pairss, s′, parametrized byQsubj(s, s

′, j).

Overall, our model encodes the following conditional distribution:

P (R·(j, ·) | V·(·, ·)) =

1

Z(V·(·, ·))

∏

s,t

exp

(

−
1

2
Qnode(s, j)Rs(j, t)

2

)

∏

t,s,s′

exp (−Qsubj(s, s
′, j)Rs(j, t)Rs′(j, t))

∏

s,t,t+1

exp (−Qtime(s, j)Rs(j, t)Rs(j, t + 1))
∏

s,l,t

exp (−Qvoxel(s, j, l)Rs(j, t)Vs(l, t)). (1)

3 Learning and Prediction

We learn the parameters of the model above from a data set consisting of all of the voxels and
all the subjective ratings for all three subjects. We train the parameters discriminatively [10], to
maximize the conditional likelihood of the observed ratings given the observed voxel measurements,



as specified in Eq. (1). Conditional training is appropriate in our setting, as our task is precisely to
predict the ratings given the voxels; importantly, this form of training allows us to avoid modeling the
highly noisy, high-dimensional voxel activation distribution. We split parameter learning into two
phases, first learning the dependence of ratings on voxels, and then learning the parameters between
rating nodes. The entire joint precision matrix over all voxels and ratings would be prohibitively
large for our learning procedure, and this approximation was computationally much more efficient.
In the first phase, we learn linear models to predict each rating given only the voxel activations. We
then modify our graph, replacing the very large set of voxel nodes with a new, much smaller set of
nodes representing the linear combinations of the voxel activations which we just learned. Using the
reduced graph, we learn a much smaller precision matrix. We describe each of these steps below.

3.1 From Voxels to Ratings

To learn the dependencies of ratings on voxels for a single subjects, we find parametersws(j),
using linear regression, which optimize

P (Rs(j, ·) | Vs(·, ·)) ∝
∏

t

exp

(

−
1

2σ2
s

(Rs(j, t) − ws(j)
T Vs(·, t))

2

)

. (2)

However, to deal with the high dimensionality of the feature space relative to the number of training
instances, we utilize feature selection; we also introduce regularization terms into the objective that
can be viewed as a spatially-based prior overws(j). First, we reduce the number of voxels involved
in the objective for each rating using a simple feature selection method — we compute the Pearson
correlation coefficient for each voxel and each rating, and select the most highly correlated features.
The number of voxels to select is a setting which we tuned, for each rating type individually, using
five-fold cross-validation on the training set. We chose to use the same number of voxels across
subjects, which is more restrictive but increases the amount of data available for cross-validation.

Even following this feature selection process, we often still have a large number (perhaps hundreds)
of relevant voxels as features, and these features are quite noisy. We therefore employ additional
regularization over the parameters associated with these voxels. We explored bothL2 (ridge) andL1

(Lasso) regularization, corresponding to a Gaussian and a Laplacian prior respectively. Introducing
both types of regularization, we end up with a log-likelihood objective of the form:

∑

t

(Rs(j, t) − ws(j)
T Vs(·, t))

2 + α
∑

i

ws(j, i)
2

+ β
∑

i

|ws(j, i)| (3)

Finally, we introduce a novel form of regularization, intended to model spatial regularities. Brain
activity associated with some types of stimuli, such as language, is believed to be localized to some
number of coherent regions, each of which contains multiple activated voxels. We therefore want to
bias our feature selection process in favor of selecting multiple voxels that are nearby in space; more
precisely, we would prefer to select a voxel which is in the vicinity of other correlated voxels, over
a more strongly correlated voxel which is isolated in the brain, as the latter is more likely to result
from noise. We therefore define a robust “hinge-loss”-like distance function for voxels. Letting
‖vi − vk‖2 denote the Euclidean distance between voxelsvi andvk in the brain, we define:

D(i, k) =











1 if ‖vi − vk‖2 < dmin,
0 if ‖vi − vk‖2 > dmax,
dmax−‖vi−vk‖2

dmax−dmin
otherwise.

We now introduce an additional regularization term

−λ
∑

ik

|ws(j, i)|D(i, k)|ws(j, k)|

into the objective Eq. (3). This term can offset theL1 term by co-activating voxels that are spatially
nearby. Thus, it encourages, but does not force, co-selection of nearby voxels. Note that this regu-
larization term is applied to the absolute values of the voxel weights, hence allowing nearby voxels
to have opposite effects on the rating; we do observe such cases in our learned model. Note that,
according to our definition, the spatial prior uses simple Euclidean distance in the brain. This is
clearly too simplistic, as it ignores the structure of the brain, particularly the complex folding of the
cortex. A promising extension of this idea would be to apply a geodesic version of distance instead,
measuring distance over gray matter only.



3.2 Training the Joint Model

We now describe the use of regression parameters, as learned in Sec. 3.1, to reduce the size of our
joint precision matrix, and learn the final parameters including the inter-rating edge weights.

Given ws(j), which we consider the optimal linear combination ofVs(·, j) for predictingRs(j),
we remove the voxel nodesVs(·, t) from our model, and introduce new ‘summary’ nodesUj(t) =
ws(j)

T Vs(·, t). Now, instead of findingQvoxel(s, j, v) parameters for every voxelv individually, we
only have to find a single parameterQu(s, j). Given the structure of our original linear Gaussian
model, there is a direct relationship between optimization in the reduced formulation and optimiz-
ing using the original formulation. Assumingws(j) is the optimal set of regression parameters,
the optimalQvoxel(s, j, l) in the full form would be proportional toQu(s, j)ws(j, l), optimized in
the reduced form. This doesnot guarantee that our two phase learning results in globally optimal
parameter settings, but simply that givenws(j), the reduction described is valid.

The joint optimization ofQu(s, j), Qnode(s, j), Qtime(s, j), andQsubj(s, s
′, j) is performed accord-

ing to the reduced conditional likelihood. The reduced form of Eq. (1) simply replaces the final
terms containingQvoxel(s, j,) with:

∏

s,t

exp (−Qu(s, j)Rs(j, t)Uj(t)). (4)

The final objective is computationally feasible due to the reduced parameter space. The log likeli-
hood is a convex function of all our parameters, with the final joint precision matrix constrained to be
positive semi-definite to ensure a legal Gaussian distribution. Thus, we can solve the problem with
semi-definite programming using a standard convex optimization package [1]. Last, we combine all
learned parameters from both steps, repeated across time steps, for the final joint model.

3.3 Prediction

Prediction of unseen ratings given new fMRI scans can be obtained through probabilistic inference
on the models learned for each rating type. We incorporate the observed voxel data from all three
subjects as observed values in our GMRF, which induces a Gaussian posterior over the joint set of
ratings. We only need to predict the most likely assignment to ratings, which is the mean (or mode)
of this Gaussian posterior. The mean can be easily computed using coordinate ascent over the log
likelihood of our joint Gaussian model. More precisely, we iterate over the nodes (recall there is
one node for each subject at each time step), and update its mean to the most likely value given the
current estimated means of its neighbors in the GMRF. LetQRR be the joint precision matrix, over
all nodes over time and subject, constructed fromQu(·, ·), Qtime(·, ·), Qsubj(·, ·, ·), andQnode(·, ·).
Then for each nodek and neighborsNk according to the graph structure of our GMRF, we update
µk ⇐ −

∑

j∈Nk
µjQRR(k, j). As the objective is convex, this process is guaranteed to converge

to the mode of the posterior Gaussian, providing the most likely ratings for all subjects, at all time
points, given the functional data from scans during a new movie.

4 Experimental Results

As described, the fMRI data collected for the PBAIC included fMRI scans of three different subjects,
and three sessions each. In each of the sessions, a subject viewed a movie approximately 20 min-
utes in length, constructed from clips of theHome Improvement sitcom. All three subjects watched
the same movies — referred to asMovie1, Movie2 andMovie3. The scans produced volumes with
approximately30, 000 brain voxels, each approximately 3.28mm by 3.28mm by 3.5mm, with one
volume produced every 1.75 seconds. Subsequently, the subject watched the movie again multiple
times (not during an fMRI session), and rated a variety of characteristics at time intervals corre-
sponding to the fMRI volume rate. Before use in prediction, the rating sequences were convolved
with a standard hemodynamic response function [4]. The core ratings used in the competition were
Amusement, Attention, Arousal, Body Parts, Environmental Sounds, Faces, Food, Language,
Laughter, Motion, Music, Sadness, andTools. Since the ratings are continuous values, compe-
tition scoring was based on the correlation (for frames where the movie is playing) of predicted



Linear Time Subj GMRF Sp
0

0.1

0.2

0.3

0.4

0.5

A
ve

ra
ge

 C
or

re
la

tio
n

Model Type

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

S
ub

j 3
 C

or
re

la
tio

n

 

 

Am
us

em
en

t

Atte
nt

ion

Aro
us

al

Bod
yP

ar
ts

Env
 S

ou
nd

s

Fac
es

Foo
d

La
ng

ua
ge

La
ug

ht
er

M
ot

ion

M
us

ic

Sad
ne

ss
Too

ls

GMRF
LinReg

25 50 75 100 200 300 500 700
0.4

0.6

0.8

1

Number Voxels Used

C
or

re
la

tio
n/

B
es

t

 

 

Body

Amus

Lang

(a) (b) (c)

Figure 2: (a) Average correlation of predicted ratings and true ratings, for simple models, the full
GMRF, finally including the spatial (Sp) prior. (b) Correlations for individual ratings, for subject 3.
(c) Effect of varying the number of voxels used for Language, Amusement, and BodyParts.

ratings with true ratings, across rating types and all subjects, combined using az′-transform. For
consistency, we adhere to the use of correlation as our performance metric.

To train our model, we use the fMRI measurements along with all ratings from all subjects’ sessions
for some set of movies, holding out other movies for testing. We chose to use an entire held out
movie session because the additional variance between fMRI sessions is an important aspect of
the prediction task. The training set is used both to learn the model parameters and for the cross-
validation step used to select regularization settings. The learned model is then used to predict
ratings for the held out test movies for all subjects, from fMRI data alone. Our GMRF model shows
significant improvement over simpler models on the prediction task, and a version of this model was
used in our submission to the PBAIC. We also evaluate the results of our feature selection steps,
examining which regions of the brain are used for each rating prediction.

4.1 Rating Prediction

For our own evaluation outside of the competition, given that we did not have access toMovie3
ratings for testing, we trained a full model using functional data and ratings from the three subjects
viewing Movie1, and then made predictions using the scans from all subjects forMovie2. The pre-
dictions made by the dynamic GMRF model were highly correlated with the true ratings. The best
overall average correlation achieved for held outMovie2 was0.482. For all subjects, the correlation
for both Language andFaces was above0.7, and we achieved correlations of above0.5 on 19 of
the39 core tasks (three subjects time13 ratings).

To evaluate the contribution of various components of our model, we also tested simpler versions,
beginning with a regularized linear regression model. We also constructed two simplified versions
of our GMRF, one which includes edges between subjects but not time interactions, and conversely
one which includes time interactions but removed subject edges. Finally, we tested our full GMRF
model, plus our GMRF model along with the spatial prior. As shown in Fig. 2(a), both the time de-
pendencies and the cross-subject interactions help greatly over the linear regression model. The final
combined model, which includes both time and subject edges, demonstrates significant improvement
over including either alone. We also see that the addition of a spatial prior (using cross-validation
to select which ratings to apply it to), results in a small additional improvement, which we explore
further in Sec. 4.2. Performance on each of the rating types individually is shown in Fig. 2(b) for
subject 3, for both linear regression and our GMRF. One interesting note is that the relative ordering
of rating type accuracy for the different models is surprisingly consistent.

As mentioned, we submitted the third place entry to the 2006 PBAIC. For the competition, we
used our joint GMRF model, but had not developed the spatial prior presented here. We trained the
model using data fromMovie1 andMovie2 and the corresponding ratings from all three subjects. We
submitted predictions for the unseenMovie3 predictions. Around40 groups made final submissions.
Our final score in the competition was0.493, whereas80% of the entries fell below0.4000. The
first place group, Olivetti et al. [14], employed recurrent neural networks with mutual information
based feature selection, scored0.515. The second group, scoring0.509, was Chigirev et al. [5]
— they applied regularized linear models with smoothing across time, spatially nearby voxels and



(a) Motion (b) Faces (c) Arousal

Figure 3: Voxels selected for various rating predictions, all for Subject 3.

averaging across subjects. Some groups employed machine learning techniques such as Support
Vector Regression, while others focused on defined Regions of Interest as features in prediction.

4.2 Voxel Selection and Regularization

We also examined the results of feature selection and regularization, looking at the location of vox-
els used for each rating, and the differences resulting from various techniques. Starting with the
approximately30, 000 brain voxels per subject, we apply our feature selection techniques, using
cross-validation on training sessions to determine the number of voxels used to predict each rating.
The optimal number did vary significantly by rating, as the graph of performance in Fig. 2(c) demon-
strates. For instance, a small voxel set (less than100) performs well for theBody Parts rating, while
theLanguage rating does well with several hundred voxels, andAmusement uses an intermediate
number. This may reflect the actual size and number of brain regions activated by such stimuli, but
likely also reflects voxel noise and the difficulty of the individual predictions.

Visualization demonstrates that our selected voxels often occur in regions known to be responsive
to relevant stimuli. For instance, voxels selected forMotion in all subjects include voxels in cortical
areas known to respond to motion in the visual field (Fig. 3(a)). Likewise, many voxels selected
for Language occur in regions linked to language processing (Fig. 4(b)). However, many other
voxels were not from expected brain regions, attributable in part to noise in the data, but also due to
the intermixed and correlated stimuli in the videos. For instance, the ratingsLanguage andFaces
for subject 1 inMovie1 have correlation0.68, and we observed that the voxels selected forFaces
andLanguage overlapped significantly. Voxels in the language centers of the brain improve the
prediction ofFaces since the two stimuli are causally related, but it might be preferable to capture
this correlation by adding edges between the rating nodes of our GMRF. Interestingly, there was
some consistency in voxel selection between subjects, even though our model did not incorporate
cross-subject voxel selection. ComparingFaces voxels for Subject 3 Fig. 3(b), to voxels for Subject
2 Fig. 4(a), we see that the respective voxels do come from similar regions. This provides further
evidence that the feature selection methods are finding real patterns in the fMRI data.

Finally, we discuss the results of applying our spatial prior. We added the prior for ratings which it
improved in cross-validation trials forall subjects —Motion, Language, andFaces. Comparison
of the voxels selected with and without our spatial prior reveal that it does result in more spatially
coherent groups of voxels. Note thetotal number of voxels selected does not rise in general. As
shown in Fig. 4(a), the voxels forFaces for subject 3 include a relevant group of voxels even without
the prior, but including the spatial prior results in inluding additional voxels voxels near this region.
Similar results forLanguage are shown for subject 1.Arousal prediction was actually hurt by
including the spatial prior, and looking at the voxels selected for subject 2 forArousal Fig. 3(c), we
see that there is almost no spatial grouping originally, so perhaps here the spatial prior is implausible.

5 Discussion

This work, and the other PBAIC entries, demonstrated that a wide range of subjective experiences
can be predicted from fMRI data collected during subjects’ exposure to rich stimuli. Our proba-
bilistic model in particular demonstrated the value of time-series and multi-subject data, as the use
of edges representing correlations across time and correlations between subjects each improved the



(a) Faces, Subject 2 (b) Language, Subject 1

Figure 4: Effect of applying the spatial prior — each left image is without, right is with prior applied.

accuracy of our predictions significantly. Further, while voxels are very noisy, with appropriate reg-
ularization and the use of a spatially-based prior, reliable prediction was possible using individual
voxels as features. Although voxels were selected from the whole brain, many of the voxels selected
as features in our model were located in brain regions known to be activated by relevant stimuli.

One natural extension to our work would include the addition of interactions between distinct rating
types, such as Language and Faces, which are likely to be correlated. This may improve predictions,
and could also result in more targeted voxel selection for each rating. More broadly, though, the
PBAIC experiments provided an extremely rich data set, including complex spatial and temporal
interactions among brain voxels and among features of the stimuli. There are many aspects of this
data we have yet to explore, including modeling the relationships between the voxels themselves
across time, perhaps identifying interesting cascading patterns of voxel activity. Another interesting
direction would be to determine which temporal aspects of the semantic ratings are best encoded by
brain activity — for instance it is possible that brain activity may respond more strongly tochanges
in some stimuli rather than simply stimulus presence. Such investigations could provide further
insight into brain activity in response to complex stimuli in addition to improving our ability to
make accurate predictions from fMRI data.

Acknowledgments

This work was supported by NSF grant DBI-0345474.

References
[1] Cvx matlab software. http://www.stanford.edu/ boyd/cvx/.
[2] Pittsburgh brain activity interpretation competition inferring experience based cognition from fmri.

http://www.ebc.pitt.edu/competition.html.
[3] What’s on your mind?Nature Neuroscience, 9(981), 2006.
[4] G. M. Boynton, S. A. Engel, G. H. Glover, and D. J. Heeger. Linear systems analysis of functional

magnetic resonance imaging in human v1.J. Neurosci, 16:4207–4221, 1996.
[5] D. Chigirev, G. Stephens, and T. P. E. team. Predicting base features with supervoxels. Abstract presented,

12th HBM meeting, Florence, Italy, 2006.
[6] D. D. Cox and R. L. Savoya. Functional magnetic resonance imaging (fmri) brain reading: detecting and

classifying distributed patterns of fmri activity in human visual cortex.NeuroImage, 19:261–270, 2003.
[7] K. J. Friston, A. P. Holmes, K. J. Worsley, J. P. Poline, C. D. Frith, and R. S. J. Frackowiak. Statistical

parametric maps in functional imaging: A general linear approach.HBM, 2(4):189–210, 1995.
[8] U. Hasson, Y. Nir, I. Levy, G. Fuhrmann, and R. Malach. Intersubject synchronization of cortical activity

during natural vision.Science, 303(1634), 2004.
[9] Y. Kamitani and F. Tong. Decoding the visual and subjective contents of the human brain.Nature

Neuroscience, 8:679–685, 2005.
[10] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Probabilistic models for segmenting

and labeling sequence data. InICML, 2001.
[11] S. Lauritzen.Graphical Models. Oxford University Press, New York, 1996.
[12] N. K. Logothetis. The underpinnings of the bold functional magnetic resonance imaging signal.The

Journal of Neuroscience, 23(10):3963–3971, 2003.
[13] T. Mitchell, R. Hutchinson, R. Niculescu, F.Pereira, X. Wang, M. Just, and S. Newman. Learning to

decode cognitive states from brain images.Machine Learning, 57(1–2):145–175, 2004.
[14] E. Olivetti, D. Sona, and S. Veeramachaneni. Gaussian process regression and recurrent neural networks

for fmri image classification. Abstract presented, 12th HBM meeting, Florence, Italy, 2006.
[15] T. P. Speed and H. T. Kiiveri. Gaussian Markov distributions over finite graphs.Annals of Statistics, 14.


