Is Early Vision Optimized for Extracting Higher-order Dependencies?

Part of Advances in Neural Information Processing Systems 18 (NIPS 2005)

Bibtex Metadata Paper


Yan Karklin, Michael Lewicki


Linear implementations of the efficient coding hypothesis, such as independent component analysis (ICA) and sparse coding models, have provided functional explanations for properties of simple cells in V1 [1, 2]. These models, however, ignore the non-linear behavior of neurons and fail to match individual and population properties of neural receptive fields in subtle but important ways. Hierarchical models, including Gaussian Scale Mixtures [3, 4] and other generative statistical models [5, 6], can capture higher-order regularities in natural images and explain nonlinear aspects of neural processing such as normalization and context effects [6, 7]. Previously, it had been assumed that the lower level representation is independent of the hierarchy, and had been fixed when training these models. Here we examine the optimal lower-level representations derived in the context of a hierarchical model and find that the resulting representations are strikingly different from those based on linear models. Unlike the the basis functions and filters learned by ICA or sparse coding, these functions individually more closely resemble simple cell receptive fields and collectively span a broad range of spatial scales. Our work unifies several related approaches and observations about natural image structure and suggests that hierarchical models might yield better representations of image structure throughout the hierarchy.