Fast biped walking with a reflexive controller and real-time policy searching

Part of Advances in Neural Information Processing Systems 18 (NIPS 2005)

Bibtex Metadata Paper


Tao Geng, Bernd Porr, Florentin Wörgötter


In this paper, we present our design and experiments of a planar biped robot ("RunBot") under pure reflexive neuronal control. The goal of this study is to combine neuronal mechanisms with biomechanics to obtain very fast speed and the on-line learning of circuit parameters. Our controller is built with biologically inspired sensor- and motor-neuron models, including local reflexes and not employing any kind of position or trajectory-tracking control algorithm. Instead, this reflexive controller allows RunBot to exploit its own natural dynamics during critical stages of its walking gait cycle. To our knowledge, this is the first time that dynamic biped walking is achieved using only a pure reflexive controller. In addition, this structure allows using a policy gradient reinforcement learning algorithm to tune the parameters of the reflexive controller in real-time during walking. This way RunBot can reach a relative speed of 3.5 leg-lengths per second after a few minutes of online learning, which is faster than that of any other biped robot, and is also comparable to the fastest relative speed of human walking. In addition, the stability domain of stable walking is quite large supporting this design strategy.