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Abstract

There is a long-standing controversy on the site of the cerebellar motor
learning. Different theories and experimental results suggest that either
the cerebellar flocculus or the brainstem learns the task and stores the
memory. With a dynamical system approach, we clarify the mechanism
of transferring the memory generated in the flocculus to the brainstem
and that of so-called savings phenomena. The brainstem learning must
comply with a sort of Hebbian rule depending on Purkinje-cell activities.
In contrast to earlier numerical models, our model is simple but it ac-
commodates explanations and predictions of experimental situations as
qualitative features of trajectories in the phase space of synaptic weights,
without fine parameter tuning.

1 Introduction

The cerebellum is involved in various types of motor learning. As schematically shown in
Fig. 1, the cerebellum is composed of the cerebellar cortex and the cerebellar nuclei (we
depict the vestibular nucleus V N in Fig. 1). There are two main pathways linking external
input from the mossy fibers (mf ) to motor outputs, which originate from the cerebellar
nuclei. The pathway that relays the mossy fibers directly to the cerebellar nuclei is called
the direct pathway. Each nucleus cell receives about 104 mossy fiber synapses.

The pathway involving the mossy fibers, the granule cells (gr), the parallel fibers (pl), and
the Purkinje cells (Pr) in the flocculo-nodular lobes of the cerebellar cortex, is called the
indirect pathway. Because the Purkinje cells, which are the sole source of output from
the cerebellar cortex, are GABAergic, firing rates of the nuclei are suppressed when this
pathway is active. The indirect pathway also includes recurrent collaterals terminating
on various types of inhibitory cells. Another anatomical feature of the indirect pathway
is that climbing fibers (Cm in Fig. 1) from the inferior olive (IO) innervate on Purkinje
cells. Taking into account the huge mass of intermediate computational units in the indirect
pathway, or the granule cells, Marr conjectured that the cerebellum operates as a perceptron
with high computational power [8]. The climbing fibers were thought to induce long-term
potentiation (LTP) of pl-Pr synapses to reinforce the signal transduction. Albus claimed
that long-term depression (LTD) rather than LTP should occur so that the Purkinje cells
inhibit the nuclei [2]. The climbing fibers were thought to serve as teaching lines that
convey error-correcting signals.
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Figure 1: Architecture of the VOR model.

The vestibulo-ocular reflex (VOR) is a standard benchmark for exploring synaptic sub-
strates of cerebellar motor learning. The VOR is a short-latency reflex eye movement that
stabilizes images on the retina during head movement. Motion of the head drives eye move-
ments in the opposite direction. When a subject wears a prism, adaptation of the VOR gain
occurs for image stabilization. In this context, in vivo experiments confirmed that the LTD
hypothesis is correct (reviewed in [6]). However, the cerebellum is not the only site of
convergence of visual and vestibular signals. The learning scheme depending only on the
indirect pathway is called the flocculus hypothesis. An alternative is the brainstem hypoth-
esis in which synaptic plasticity is assumed to occur in the direct pathway (mf → V N )
[12]. This idea is supported by experimental evidence that flocculus shutdown after 3 days
of VOR adaptation does not impair the motor memory [7]. Moreover, in other experiments,
plasticity of the Purkinje cells in response to vestibular inputs, as required in the flocculus
hypothesis, really occurs but in the direction opposite to that predicted by the flocculus
hypothesis [5, 12]. Also, LTP of the mf -V N synapses, which is necessary to implement
the brainstem hypothesis [3], has been suggested in experiments [14].

Relative contributions of the flocculus mechanism and the brainstem mechanism to motor
learning remain illusive [3, 5, 9]. The same controversy exists regarding the mechanism of
associative eyelid conditioning [9, 10, 11]. Related is the distinction between short-term
and long-term plasticities. Many of the experiments in favor of the flocculus hypothesis are
concerned with short-term learning, whereas plasticity involving the vestibular nuclei is
suggested to be functional in the long term. Short-term motor memory in the flocculus may
eventually be transferred to the brainstem. This is termed the memory transfer hypothesis
[9]. Medina and Mauk proposed a numerical model and examined what types of brainstem
learning rules are compatible with memory transfer [10]. They concluded that the brain-
stem plasticity should be driven by coincident activities of the Purkinje cells and the mossy
fibers. The necessity of Hebbian type of learning in the direct pathway is also supported
by another numerical model [13]. We propose a much simpler model to understand the
essential mechanism of memory transfer without fine parameter manipulations.

Another goal of this work is to explain savings of learning. Savings are observed in natural
learning tasks. Because animals can be trained just for a limited amount of time per day,
the task period and the rest period, of e.g. 1 day, alternate. Performance is improved during
the task period, and it degrades during the rest period (in the dark). However, when the
alternation is repeated, the performance is enhanced more rapidly and progressively in later
sessions [7] (also, S. Nagao, private communication). The flocculus may be responsible
for daily rapid learning and forgetting, and the brainstem may underlie gradual memory
consolidation [11]. While our target phenomenon of interest is the VOR, the proposed
model is fairly general.



2 Model

Looking at Fig. 1, let us denote by u ∈ R
m the external input to the mossy fibers. It is

propagated to the granule cells via synaptic connectivity represented by an n by m matrix
A, where presumably n � m. The output of the granule cells, or x ≡ Au ∈ R

n,
is received by the Purkinje-cell layer. For simplicity, we assume just one Purkinje cell
whose output is written as y ≡ wx, where w ∈ R × R

m. Since pl-Pr synapses are
excitatory, the elements of w are positive. The direct pathway (mf → V N ) is defined by
a plastic connection matrix v ∈ R × R

m. The output to the VOR actuator is given by
z = vu − y = vu −wAu, which is the output of the sole neuron of the cerebellar nuclei.
This form of z takes into account that the contribution of the indirect pathway is inhibitory
and that of the direct pathway is excitatory.

The animal learns to adapt z as close as possible to the desirable motor output ru. For
a large (resp. small) desirable gain r, the correct direction of synaptic changes is the de-
crease (resp. increase) in w and the increase (resp. decrease) in v [5]. The learning error
e ≡ ru − z is carried by the climbing fibers and projects onto the Purkinje cell, which
enables supervised learning [6]. The LTD of w occurs when the parallel-fiber input and the
climbing-fiber input are simultaneously large [6, 9]. Since we can write

ẇ = −η1ex = −
1

2
η1

∂e2

∂w
, (1)

where η1 is the learning rate, w evolves to minimize e2. Equation (1) is a type of Widrow-
Hoff rule [4, p. 320]. With spontaneous inputs only, or in the presence of x and the absence
of e, w experiences LTP [6, 9]. We model this effect by adding η2x to Eq. (1). This term
provides subtractive normalization that counteracts the use-dependent LTD [4, p. 290].
However, subtractive normalization cannot prohibit w from running away when the error
signal is turned off. Therefore, we additionally assume multiplicative normalization term
η3w to limit the magnitude of w [4, p. 290, 314]. In the end, Eq. (1) is modified to

ẇ = −η1(ru − vu + wAu)Au + η2Au − η3w, (2)

where η2 and η3 are rates of memory decay satisfying η2, η3 � η1.

In the dark, the VOR gain, which might have changed via adaptation, tends back to a value
close to unity [5]. Let us represent this reference gain by r = r0. With the synaptic
strengths in this null condition denoted by (w,v) = (w0,v0), we obtain r0u = v0u −
w0Au. By setting ẇ = 0 in Eq. (2), we derive

η2Au = η1(r0u − v0u + w0Au)Au + η3w0 = η3w0. (3)

Substituting Eq. (3) into Eq. (2) results in

ẇ = −η1 (ru − vu + wAu) Au − η3 (w − w0) . (4)

Experiments show that v can be potentiated [14]. Enhancement of the excitability of the
nucleus output (z) in response to tetannic stimulation, or sustained u, is also in line with the
LTP of v [1]. In contrast, LTD of v is biologically unknown. Numerical models suggest
that LTP in the nuclei should be driven by y [10, 11]. However, the mechanism and the
specificity underlying plasticity of v are not well understood [9]. Therefore, we assume that
both LTP and LTD of v occur in an associative manner, and we represent the LTP effect
by a general function F . In parallel to the learning rule of w, we assume a subtractive
normalization term −η5u [10]. We also add a multiplicative normalization term η6v to
constrain v. Finally, we obtain

v̇ = η4F(u, y, z, e) − η5u − η6v. (5)

Presumably, v changes much more slowly (on a time scale of 8–12 hr) than w changes (0.5
hr) [10, 13]. Therefore, we assume η1 � η4 � η5, η6.



3 Analysis of Memory Transfer

Let us examine a couple of learning rules in the direct pathway to identify robust learning
mechanisms.

3.1 Supervised learning

Although the climbing fibers carrying e send excitatory collaterals to the cerebellar nu-
clei, supervised learning there has very little experimental support [5]. Here we show that
supervised learning in the direct pathway is theoretically unlikely. Let us assume that mod-
ification of v decreases |e|. Accordingly, we set F = −∂e2/∂v = eu. Then, Eq. (5)
becomes

v̇ = η4(ru − vu + wAu)u − η5u − η6v. (6)
In the natural situation, r = r0. Hence,

η5u = η4(r0u − v0u + w0Au)u − η6v0 = −η6v0. (7)

Inserting Eq. (7) into Eq. (6) yields

v̇ = η4 (ru − vu + wAu)u − η6(v − v0). (8)

For further analysis, let us assume m = n = 1 (for which we quit bold notations) and
perform the slow-fast analysis based on η1 � η3, η4 � η6. Equations (4) and (8) define
the nullclines ẇ = 0 and v̇ = 0, which are represented respectively by

v = v0 + r − r0 +
η1A

2u2 + η3

η1Au2
(w − w0), and (9)

v = v0 +
η4u

2

η4u2 + η6

(r − r0) +
η4Au2

η4u2 + η6

(w − w0). (10)

Since ẇ = O(η1) � O(η4) = v̇ in an early stage, a trajectory in the w-v plane initially
approaches the fast manifold (Eq. (9)) and moves along it toward the equilibrium given by

w∗ = w0−
η1η6Au2(r − r0)

η1η6A2u2 + η3η4u2 + η3η6

, v∗ = v0+
η3η4u

2(r − r0)

η1η6A2u2 + η3η4u2 + η3η6

. (11)

LTD of w and LTP of v are expected for adaptation to a larger gain (r > r0), and LTP of
w and LTD of v are expected for r < r0. The results are consistent with both the flocculus
hypothesis and the brainstem hypothesis as far as the direction of learning is concerned [5].
When r > r0 (resp. r < r0), LTD (resp. LTP) of w first occurs to decrease the learning
error. Then, the motor memory stored in w is gradually transferred by LTP (resp. LTD) of
v replacing LTD (resp. LTP) of w. In the long run, the memory is stored mainly in v, not
in w.

However, the memory transfer based on supervised learning has fundamental deficiencies.
First, since η1 � η3 and η4 � η6, both nullclines Eqs. (9) and (10) have a slope close
to A in the w-v plane. This means that the relative position of the equilibrium depends
heavily on the parameter values, especially on the learning rates, the choice of which is
rather arbitrary. Then, (w∗, v∗) may be located so that, for example, the LTP of w or LTD
of v results from r > r0. Also, the degree of transfer, or |w∗ − w0| / |v

∗ − v0|, is not robust
against parameter changes. This may underlie the fact that LTD of w was not followed by
partial LTP in the numerical simulations in [10]. Even if the position of (w∗, v∗) happens
to support LTD of w and LTP of v, memory transfer takes a long time. This is because
Eqs. (9) and (10) are fairly close, which means that v̇ is small on the fast manifold (ẇ = 0).

We can also imagine a type of Hebbian rule with F = ∂z2/∂v = zu. Similar calculations
show that this rule also realizes memory transfer only in an unreliable manner.
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Figure 2: Dynamics of the synaptic weights in the Purkinje cell-dependent learning. (A)
r > r0 and (B) r < r0.

3.2 Purkinje cell-dependent learning

Results of numerical studies support that v should be subject to a type of Hebbian learning
depending on two afferents to the vestibular nuclei, namely, u and y [10, 11, 13]. Changes
in the VOR gain are signaled by y. Since LTP should logically occur when y is small and u

is large, we set F = (ymax − y)u, where ymax is the maximum firing rate of the Purkinje
cell. Then, we obtain

v̇ = η4(ymax − wAu)u − η5u − η6v. (12)

The subtraction normalization is determined from the equilibrum condition:

η5u = η4(ymax − w0Au) − η6v0. (13)

Substituting Eq. (13) into Eq. (12) yields

v̇ = η4(w0 − w)Au
2 + η6(v0 − v). (14)

When m = n = 1, the nullclines are given by Eq. (9) and

v = v0 −
η4Au2

η6

(w − w0), (15)

which are depicted in Fig. 2(A) and (B) for r > r0 and r < r0, respectively. As shown by
arrows in Fig. 2, trajectories in the w-v space first approach the fast manifold Eq. (9) and
then move along it toward the equilibrium given by

w∗ = w0−
η1η6Au2(r − r0)

η1η4A2u4 + η1η6A2u2 + η3η6

, v∗ = v0+
η1η4A

2u4(r − r0)

η1η4A2u4 + η1η6A2u2 + η3η6

.

(16)

Equation (15) has a large negative slope because η4 � η6. Consequently, setting r > r0

(resp. r < r0) duly results in LTD (resp. LTP) of w and LTP (resp. LTD) of v. At the
same time, LTD (resp. LTP) of w in an early stage of learning is partially compensated
by subsequent LTP (resp. LTD) of w, which agrees with previously reported numerical
results [10]. In contrast to the supervised and Hebbian learning rules, this learning is robust
against parameter changes since the positions and the slopes of the two nullclines are apart
from each other. Owing to this property, in the long term, the memory is transferred more
rapidly along the w-nullcline than for the other two learning rules. Another benefit of the
large negative slope of Eq. (15) is that |v∗ − v0| � |w∗ − w0| holds, which means efficient
memory transfer from w to v.



The error at the equilibrum state is

e∗ =
η3η6(r − r0)u

η1η4A2u4 + η1η6A2u2 + η3η6

. (17)

Equation (17) guarantees that the e = 0 line is located as shown in Fig. 2, and the learning
proceeds so as to decrease |e|. The performance overshoot, which is unrealistic, does not
occur.

4 Numerical Simulations of Savings

The learning rule proposed in Sec. 3.2 explains savings as well. To show this, we mimic a
situation of savings by periodically alternating the task period and the rest period. Specif-
ically, we start with r = r0 = 1, w = w0, v = v0, and the learning condition (r = 2 or
r = 0.5) is applied for 4 hours a day. During the rest of the day (20 hours), the dark con-
dition is simulated by giving no teaching signal to the model. Changes in the VOR gains
for 8 consecutive days are shown in Fig. 3(A) and (C) for r = 2 and r = 0.5, respectively.
The numerical results are consistent with the savings found in other reported experiments
[7] and models [11]; the animal forgets much of the acquired gain in the dark, while a
small fraction is transferred each day to the cerebellar nuclei. The time-dependent synaptic
weights are shown in Fig. 3(B) (r = 2) and (D) (r = 0.5) and suggest that v is really
responsible for savings and that its plasticity needs guidance under the short-term learning
of w. The memory transfer occurs even in the dark condition, as indicated by the increase
(resp. decrease) of v in the dark shown in Fig. 3(B) (resp. (D)). This happens because ruin
of the short-term memory of w drives the learning of v for some time even after the daily
training has finished. For the indirect pathway, a dark condition defines an off-task period
during which w gradually loses its associations.

For comparison, let us deal with the case in which v is fixed. Then, the learning rule Eq. (4)
is reduced to

ẇ = −η1 [(r − r0) u + (w − w0) Au] Au − η3 (w − w0) . (18)

The VOR adaptation with this rule is shown in Fig. 4(A) (r = 2) and (B) (r = 0.5). Long-
term retention of the acquired gain is now impossible, whereas the short-term learning, or
the adaptation within a day, deteriorates little. Since savings do not occur, the ultimate
learning error is larger than when v is plastic.

However, if w is fixed and v is plastic, the VOR gain is not adaptive, since y does not
carry teaching signals any longer. In this case, we must implement supervised learning of
v for learning to occur. Then, r adapts only gradually on the slow time scale of η4, and the
short-term learning is lost.

5 Discussion

Our model explains how the flocculus and the brainstem cooperate in motor learning. Pre-
sumably, the indirect pathway involving the flocculus is computationally powerful because
of a huge number of intermediate granule cells, but its memory is of short-term nature.
The direct pathway bypassing the mossy fibers to the cerebellar nuclei is likely to have
less computational power but stores motor memory for a long period. A part of the motor
memory is expected to be passed from the flocculus to the nuclei. This happens in a robust
manner if the direct pathway is equipped with the learning rule dependent on correlation
between the Purkinje-cell firing and the mossy-fiber firing. To explore whether associative
LTP/LTD in the cerebellar nuclei really exists will be a subject of future experimental work.
Our model is also applicable to savings.
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Figure 3: Numerical simulations of savings with the Purkinje cell-dependent learning rule.
We set A = 0.4, u = 1, w0 = 2, r0 = 1, v0 = r0 + Aw0, η1 = 7, η3 = 0.3, η4 = 0.05,
η6 = 0.002. The target gains are (A, B) r = 2 and (C, D) r = 0.5. (A) and (C) show VOR
gains. (B) and (D) show trajectories in the w-v space (thin solid lines) together with the
nullclines (thick solid lines) and e = 0 (thick dotted lines).
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Figure 4: Numerical simulations of savings with fixed v. The parameter values are the
same as those used in Fig. 3. The target gains are (A) r = 2 and (B) r = 0.5.



In the earlier models [10, 11], quantitative meanings were given to the equilibrium synaptic
weights. Actually, they are solely determined from non-experimentally determined param-
eters, namely, the balance between the learning rates (in our terminology, η1, η2, η4 and
η5). Also, the balance seems to play a role in preventing runaway of synaptic weights. In
contrast, our model uses the ratio of learning rates (and values of other parameters) just for
qualitative purposes and is capable of explaning and predicting experimental settings with-
out parameter tuning. For example, the earlier arguments negating the flocculus hypothesis
are based on the fact that the plasticity of the flocculus (w) responding to vestibular inputs
occurs but in the direction opposite to the expectation of the flocculus hypothesis [5, 12].
However, this experimental observation is not necessarily contradictory to either the floc-
culus hypothesis or the two-site hypothesis. As shown in Fig. 2(A), when adapting to a
large VOR gain, w experiences LTD in the initial stage [6]. Then, partial LTP ensues as
the motor memory is transferred to the nuclei. Another prediction is about adaptation to a
small gain. Figure 2(B) predicts that, in this case, LTP in the indirect pathway is gradually
transferred to LTD in the direct pathway. Partial LTD following LTP is anticipated in the
flocculus. This implies savings in unlearning.
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