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Abstract

We extend radial basis function (RBF) networks to the scenario in which
multiple correlated tasks are learned simultaneously, and present the cor-
responding learning algorithms. We develop the algorithms for learn-
ing the network structure, in either a supervised or unsupervised manner.
Training data may also be actively selected to improve the network’s gen-
eralization to test data. Experimental results based on real data demon-
strate the advantage of the proposed algorithms and support our conclu-
sions.

1 Introduction

In practical applications, one is frequently confronted with situations in which multiple
tasks must be solved. Often these tasks are not independent, implying what is learned from
one task is transferable to another correlated task. By making use of this transferability,
each task is made easier to solve. In machine learning, the concept of explicitly exploiting
the transferability of expertise between tasks, by learning the tasks simultaneously under a
unified representation, is formally referred to as “multi-task learning” [1].

In this paper we extend radial basis function (RBF) networks [4,5] to the scenario of multi-
task learning and present the corresponding learning algorithms. Our primary interest is to
learn the regression model of several data sets, where any given data set may be correlated
with some other sets but not necessarily with all of them. The advantage of multi-task
learning is usually manifested when the training set of each individual task is weak, i.e., it
does not generalize well to the test data. Our algorithms intend to enhance, in a mutually
beneficial way, the weak training sets of multiple tasks, by learning them simultaneously.
Multi-task learning becomes superfluous when the data sets all come from the same gen-
erating distribution, since in that case we can simply take the union of them and treat the
union as a single task. In the other extreme, when all the tasks are independent, there is no
correlation to utilize and we learn each task separately.

The paper is organized as follows. We define the structure of multi-task RBF network
in Section 2 and present the supervised learning algorithm in Section 3. In Section 4 we
show how to learn the network structure in an unsupervised manner, and based on this
we demonstrate how to actively select the training data, with the goal of improving the



generalization to test data. We perform experimental studies in Section 5 and conclude the
paper in Section 6.

2 Multi-Task Radial Basis Function Network

Figure 1 schematizes the radial basis function (RBF) network structure customized to mul-
titask learning. The network consists of an input layer, a hidden layer, and an output layer.
The input layer receives a data pointx = [x1, · · · , xd]

T ∈ R
d and submits it to the hidden

layer. Each node at the hidden layer has a localized activationφn(x) = φ(||x− cn||, σn),
n = 1, · · · , N , where|| · || denotes the vector norm andφn(·) is a radial basis function
(RBF) localized aroundcn with the degree of localization parameterized byσn. Choos-
ing φ(z, σ) = exp(− z2

2σ2 ) gives the Gaussian RBF. The activations of all hidden nodes
are weighted and sent to the output layer. Each output node represents a unique task
and has its own hidden-to-output weights. The weighted activations of the hidden nodes
are summed at each output node to produce the output for the associated task. Denoting
wk = [w0k, w1k, · · · , wNk]T as the weights connecting hidden nodes to thek-th output
node, then the output for thek-th task, in response to inputx, takes the form

fk(x) = w
T
k φ(x) (1)

whereφ(x) =
[
φ0(x), φ1(x), . . . , φN (x)

]T
is a column containingN + 1 basis functions

with φ0(x) ≡ 1 a dummy basis accounting for the bias in Figure 1.
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Figure 1: A multi-task structure of RBF Network. Each of the output nodes represents a unique
task. Each task has its own hidden-to-output weights but all the tasks share the same hidden nodes.
The activation of hidden noden is characterized by a basis functionφn(x) = φ(||x − cn||, σn). A

typical choice ofφ is φ(z, σ) = exp(− z2

2σ2 ), which gives the Gaussian RBF.

3 Supervised Learning

Suppose we haveK tasks and the data set of thek-th task is Dk =
{(x1k, y1k), · · · , (xJkk, yJkk)}, whereyik is the target (desired output) ofxik. By defi-
nition, a given data pointxik is said to be supervised if the associated targetyik is provided
and unsupervised ifyik is not provided. The definition extends similarly to a set of data



Table 1: Learning Algorithm of Multi-Task RBF Network
Input: {(x1k, y2k), · · · , (xJk,k, yJk,k)}k=1:K , φ(·, σ), σ, andρ; Output:φ(·) and
{wk}

K
k=1.

1. For m=1:K, For n=1:Jm, For k=1:K, For i=1:Jk

Computeφ̂nm
ik = φ(||xnm − xik||, σ);

2. Let N = 0, φ(·) = 1, e0 =
∑K

k=1

[∑Jk

i=1 y2
ik − (Jk + ρ)−1(

∑Jk

i=1 yik)2
]
;

For k=1:K, computeAk =Jk+ρ, wk =(Jk+ρ)−1
∑Jk

i=1yik;
3. For m=1:K, For n=1:Jm

If φ̂nm is not marked as “deleted”
For k=1:K, compute

ck =
∑Jk

i=1 φikφ̂nm
ik , qk =

∑Jk

i=1(φ̂
nm
ik )2 + ρ− c

T
k A

−1
k ck;

If there existsk such thatqk = 0, markφ̂nm as “deleted”;
else, computeδe(φ, φ̂nm) using (5).

4. If {φ̂ik}i=1:Jk,k=1:K are all marked as “deleted”, go to 10.
5. Let (n∗,m∗) = arg max

φ̂nm not marked as “deleted”δe(φ,φ̂nm); Mark φ̂n∗m∗

as “deleted”.
6. Tune RBF parameterσN+1 = arg maxσ δe(φ, φ(|| · −xn∗m∗ ||, σ))

7. Let φN+1(·) = φ(|| · −xn∗m∗ ||, σN+1); Update φ(·)← [φT (·), φN+1(·)]T ;
8. For k=1:K

ComputeAnew
k andw

new
k respectively by (A-1) and (A-3) in the appendix; Up-

dateAk ← A
new
k , wk ← w

new
k

9. Let eN+1 = eN − δe(φ, φN+1); If the sequence{en}n=0:(N+1) is converged, go
to 10, else updateN ← N + 1 and go back to 3.

10.Exit and outputφ(·) and{wk}
K
k=1.

points. We are interested in learning the functionsfk(x) for theK tasks, based on∪K
k=1Dk.

The learning is based on minimizing the squared error

e (φ,w) =
∑K

k=1

{∑Jk

i=1

(
w

T
k φik − yik

)2
+ ρ ||wk||

2
}

(2)

whereφik = φ(xik) for notational simplicity. The regularization termsρ ||wk||
2, k =

1, · · · ,K, are used to prevent singularity of theA matrices defined in (3), andρ is typically
set to a small positive number. For fixedφ’s, thew’s are solved by minimizinge(φ,w)
with respect tow, yielding

wk = A
−1
k

∑Jk

i=1yikφik and Ak =
∑Jk

i=1φikφT
ik + ρ I, k = 1, · · · ,K (3)

In a multi-task RBF network, the input layer and output layer are respectively specified by
the data dimensionality and the number of tasks. We now discuss how to determine the
hidden layer (basis functionsφ). Substituting the solutions of thew’s in (3) into (2) gives

e(φ) =
∑K

k=1

∑Jk

i=1

(
y2

ik − yikw
T
k φik

)
(4)

wheree(φ) is a function ofφ only becausew’s are now functions ofφ as given by
(3). By minimizinge(φ), we can determineφ. Recalling thatφik is an abbreviation of

φ(xik) =
[
1, φ1(xik), . . . , φN (xik)

]T
, this amounts to determiningN , the number of ba-

sis functions, and the functional form of each basis functionφn(·), n = 1, . . . , N . Consider
the candidate functions{φnm(x) = φ(||x−xnm||, σ) : n = 1, · · · , Jm, m = 1, · · · ,K}.
We learn the RBF network structure by selectingφ(·) from these candidate functions such
thate(φ) in (4) is minimized. The following theorem tells us how to perform the selection
in a sequential way; the proof is given in the Appendix.



Theorem 1 Let φ(x) = [1, φ1(x), . . . , φN (x)]T and φN+1(x) be a single basis function.
Assume the A matrices corresponding to φ and [φ, φN+1]T are all non-degenerate. Then

δe(φ, φN+1) = e(φ)− e([φ, φN+1]T ) =
∑K

k=1

(
c

T
k wk −

∑Jk

i=1yikφN+1
ik

)2
q−1
k (5)

where φN+1
ik = φN+1(φik), wk and A are the same as in (3), and

ck =
∑Jk

i=1φikφN+1
ik , dk =

∑Jk

i=1(φ
N+1
ik )2 + ρ, qk = dk − c

T
k A

−1
k ck (6)

By the conditions of the theoremAnew
k is full rank and hence it is positive definite by con-

struction. By (A-2) in the Appendix,q−1
k is a diagonal element of(Anew

k )−1, thereforeq−1
k

is positive and by (5)δe(φ, φN+1) > 0, which means addingφN+1 to φ generally makes
the squared error decrease. The decreaseδe(φ, φN+1) depends onφN+1. By sequentially
selecting basis functions that bring the maximum error reduction, we achieve the goal of
maximizinge(φ). The details of the learning algorithm are summarized in Table 1.

4 Active Learning

In the previous section, the data inDk are supervised (provided with the targets). In this
section, we assume the data inDk are initially unsupervised (onlyx is available without
access to the associatedy) and we select a subset fromDk to be supervised (targets ac-
quired) such that the resulting network generalizes well to the remaining data inDk. The
approach is generally known as active learning [6]. We first learn the basis functionsφ
from the unsupervised data, and based onφ select data to be supervised. Both of these
steps are based on the following theorem, the proof of which is given in the Appendix.

Theorem 2 Let there be K tasks and the data set of the k-th task is Dk ∪ D̃k where

Dk = {(xik, yik)}Jk

i=1 and D̃k = {(xik, yik)}Jk+J̃k

i=Jk+1. Let there be two multi-task RBF
networks, whose output nodes are characterized by fk(·) and f∼

k (·), respectively, for task
k = 1, . . . ,K. The two networks have the same given basis functions (hidden nodes)
φ(·) = [1, φ1(·), · · · , φN (·)]T , but different hidden-to-output weights. The weights of fk(·)

are trained with Dk ∪ D̃k, while the weights of f∼
k (·) are trained using D̃k. Then for

k = 1, · · · ,K, the square errors committed on Dk by fk(·) and f∼
k (·) are related by

0≤ [det Γk]−1≤λ−1
max,k≤

[∑Jk

i=1(yik−f∼
k (xik))

2]−1∑Jk

i=1(yik−fk(xik))
2
≤λ−1

min,k≤1 (7)

where Γk =
[
I + Φ

T
k (ρ I + Φ̃kΦ̃

T

k )−1
Φk

]2
with Φ =

[
φ(x1k), . . . ,φ(xJkk)

]
and Φ̃ =[

φ(xJk+1,k), . . . ,φ(x
Jk+J̃k,k

)
]
, and λmax,k and λmin,k are respectively the largest and

smallest eigenvalues of Γk.

Specializing Theorem 2 to the casẽJk = 0, we have

Corollary 1 Let there be K tasks and the data set of the k-th task is Dk = {(xik, yik)}Jk

i=1.
Let the RBF network, whose output nodes are characterized by fk(·) for task k =
1, . . . ,K, have given basis functions (hidden nodes) φ(·) = [1, φ1(·), · · · , φN (·)]T and
the hidden-to-output weights of task k be trained with Dk. Then for k = 1, · · · ,K, the
squared error committed on Dk by fk(·) is bounded as 0 ≤ [det Γk]−1 ≤ λ−1

max,k ≤[∑Jk

i=1y
2
ik

]−1∑Jk

i=1 (yik − fk(xik))
2
≤ λ−1

min,k ≤ 1, where Γk =
(
I + ρ−1

Φ
T
k Φk

)2
with

Φ =
[
φ(x1,k), . . . ,φ(xJk,k)

]
, and λmax,k and λmin,k are respectively the largest and

smallest eigenvalues of Γk.

It is evident from the properties of matrix determinant [7] and the definition ofΦ that
detΓk =

[
det(ρI + ΦkΦ

T
k )

]2
[det(ρ I)]−2 =

[
det(ρI +

∑Jk

i=1 φikφT
ik)

]2
[det(ρ I)]−2.



Using (3) we write succinctlydetΓk = [detA2
k][det(ρ I)]−2. We are interested in se-

lecting the basis functionsφ that minimize the error, before seeingy’s. By Corollary 1
and the equationdetΓk = [detA2

k][det(ρ I)]−2, the squared error is lower bounded by∑Jk

i=1y
2
ik[det(ρ I)]2[detAk]−2. Instead of minimizing the error directly, we minimize its

lower bound. As[det(ρ I)]2
∑Lk

i=1y
2
ik does not depend onφ, this amounts to selectingφ to

minimize (detAk)−2. To minimize the errors for all tasksk = 1 · · · ,K, we selectφ to
minimize

∏K

k=1(detAk)−2.

The selection proceeds in a sequential manner. Suppose we have selected basis func-
tions φ = [1, φ1, · · · , φN ]T . The associatedA matrices areAk =

∑Jk

i=1 φikφT
ik +

ρ I(N+1)×(N+1), k = 1, · · · ,K. Augmenting basis functions to[φT , φN+1]T , the A

matrices change toAnew
k =

∑Jk

i=1[φ
T
ik, φN+1

ik ]T [φT
ik, φN+1

ik ] + ρ I(N+2)×(N+2). Us-

ing the determinant formula of block matrices [7], we get
∏K

k=1(detAnew
k )−2 =∏K

k=1(qk detAk)−2, whereqk is the same as in (6). AsAk does not depend onφN+1,
the left-hand side is minimized by maximizing

∏K

k=1 q2
k. The selection is easily imple-

mented by making the following two minor modifications in Table 1: (a) in step 2, compute
e0 =

∑K

k=1 ln(Jk + ρ)−2; in step 3, computeδe(φ, φ̂nm) =
∑K

k=1 ln q2
k. Employing the

logarithm is for gaining additivity and it does not affect the maximization.

Based on the basis functionsφ determined above, we proceed to selecting data to be su-
pervised and determining the hidden-to-output weightsw from the supervised data using
the equations in (3). The selection of data is based on an iterative use of the following
corollary, which is a specialization of Theorem 2 and was originally given in [8].

Corollary 2 Let there be K tasks and the data set of the k-th task is Dk = {(xik, yik)}Jk

i=1.
Let there be two RBF networks, whose output nodes are characterized by fk(·) and
f+

k (·), respectively, for task k = 1, . . . ,K. The two networks have the same given
basis functions φ(·) = [1, φ1(·), · · · , φN (·)]T , but different hidden-to-output weights.
The weights of fk(·) are trained with Dk, while the weights of f+

k (·) are trained us-
ing D+

k = Dk ∪ {(xJk+1,k, yJk+1,k)}. Then for k = 1, · · · ,K, the squared errors
committed on (xJk+1,k, yJk+1,k) by fk(·) and f+

k (·) are related by
[
f+

k (xJk+1,k) −

yJk+1,k

]2
=

[
γ(xJk+1,k)

]−1[
fk(xJk+1,k) − yJk+1,k

]2
, where γ(xJk+1,k) =

[
1 +

φT (xJk+1,k)A−1
k φ(xJk+1,k)

]2
≥ 1 and Ak =

∑Jk

i=1

[
ρI + φ(xik)φT (xik)

]
is the same

as in (3).

Two observations are made from Corollary 2. First, ifγ(xJk+1,k) ≈ 1, seeingyJk+1,k

does not effect the error onxJk+1,k, indicatingDk already contain sufficient information
about(xJk+1,k, yJk+1,k). Second, ifγ(xi) ≫ 1, seeingyJk+1,k greatly decrease the er-
ror on xJk+1,k, indicatingxJk+1,k is significantly dissimilar (novel) toDk andxJk+1,k

must be supervised to reduce the error. Based on Corollary 2, the selection proceeds se-
quentially. Suppose we have selected dataDk = {(xik, yik)}Jk

i=1, from which we com-
puteAk. We select the next data point asxJk+1,k = argmax i>Jk, k=1,··· ,K γ(xik) =

argmax i>Jk k=1,··· ,K

[
1 + φT(xik)A−1

k φ(xik)
]2

. After xJk+1,k is selected, theAk is
updated and the next selection begins. As the iteration advancesγ will decrease until it
reaches convergence. We use (3) to computew from the selectedx and their associated
targetsy, completing learning of the RBF network.

5 Experimental Results

In this section we compare the multi-task RBF network against single-task RBF networks
via experimental studies. We consider three types of RBF networks to learnK tasks, each



with its data setDk. In the first, which we call “one RBF network”, we let theK tasks
share both basis functionsφ (hidden nodes) and hidden-to output weightsw, thus we do
not distinguish theK tasks and design a single RBF network to learn a union of them. The
second is the multi-task RBF network, where theK tasks share the sameφ but each has its
ownw. In the third, we haveK independent networks, each designed for a single task.

We use a school data set from the Inner London Education Authority, consisting of ex-
amination records of 15362 students from 139 secondary schools. The data are available
at http://multilevel.ioe.ac.uk/intro/datasets.html. This data set was originally used to study
the effectiveness of schools and has recently been used to evaluate multi-task algorithms
[2,3]. The goal is to predict the exam scores of the students based on 9 variables: year of
exam (1985, 1986, or 1987), school code (1-139), FSM (percentage of students eligible for
free school meals), VR1 band (percentage of students in school in VR band one), gender,
VR band of student (3 categories), ethnic group of student (11 categories), school gender
(male, female, or mixed), school denomination (3 categories). We consider each school a
task, leading to 139 tasks in total. The remaining 8 variables are used as inputs to the RBF
network. Following [2,3], we converted each categorical variable to a number of binary
variables, resulting in a total number of 27 input variables, i.e.,x ∈ R

27. The exam score
is the target to be predicted.

The three types of RBF networks as defined above are designed as follows. The multi-task
RBF network is implemented as the structure as shown in Figure 1 and trained with the
learning algorithm in Table 1. The “one RBF network” is implemented as a special case
of Figure 1, with a single output node and trained using the union of supervised data from
all 139 schools. We design 139 independent RBF networks, each of which is implemented
with a single output node and trained using the supervised data from a single school. We

use the Gaussian RBFφn(x) = exp(− ||x−cn||2

2σ2 ), where thecn’s are selected from training
data points andσn’s are initialized as 20 and optimized as described in Table 1. The main
role of the regularization parameterρ is to prevent theA matrices from being singular and
it does not affect the results seriously. In the results reported here,ρ is set to10−6.

Following [2-3], we randomly take75% of the 15362 data points as training (supervised)
data and the remaining25% as test data. The generalization performance is measured by
the squared error(fk(xik) − yik)2 averaged over all test dataxik of tasksk = 1, · · · ,K.
We made 10 independent trials to randomly split the data into training and test sets and the
squared error averaged over the test data of all the 139 schools and the trials are shown in
Table 2, for the three types of RBF networks.

Table 2:Squared error averaged over the test data of all 139 schools and the 10 independent trials
for randomly splitting the school data into training (75%) and testing (25%) sets.

Multi-task RBF network Independent RBF networks One RBF network

109.89± 1.8167 136.41± 7.0081 149.48± 2.8093

Table 2 clearly shows the multi-task RBF network outperforms the other two types of RBF
networks by a considerable margin. The “one RBF network” ignores the difference be-
tween the tasks and the independent RBF networks ignore the tasks’ correlations, therefore
they both perform inferiorly. The multi-task RBF network uses the shared hidden nodes
(basis functions) to capture the common internal representation of the tasks and meanwhile
uses the independent hidden-to-output weights to learn the statistics specific to each task.

We now demonstrate the results of active learning. We use the method in Section 4 to ac-
tively split the data into training and test sets using a two-step procedure. First we learn the
basis functionsφ of multi-task RBF network using all 15362 data (unsupervised). Based
on theφ, we then select the data to be supervised and use them as training data to learn



the hidden-to-output weightsw. To make the results comparable, we use the same training
data to learn the other two types of RBF networks (including learning their ownφ andw).
The networks are then tested on the remaining data.

Figure 2 shows the results of active learning. Each curve is the squared error averaged over
the test data of all 139 schools, as a function of number of training data. It is clear that
the multi-task RBF network maintains its superior performance all the way down to 5000
training data points, whereas the independent RBF networks have their performances de-
graded seriously as the training data diminish. This demonstrates the increasing advantage
of multi-task learning as the number of training data decreases. The “one RBF network”
seems also insensitive to the number of training data, but it ignores the inherent dissimilar-
ity between the tasks, which makes its performance inferior.
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Figure 2:Squared error averaged over the test data of all 139 schools, as a function of the number
of training (supervised) data. The data are split into training and test sets via active learning.

6 Conclusions

We have presented the structure and learning algorithms for multi-task learning with the
radial basis function (RBF) network. By letting multiple tasks share the basis functions
(hidden nodes) we impose a common internal representation for correlated tasks. Exploit-
ing the inter-task correlation yields a more compact network structure that has enhanced
generalization ability. Unsupervised learning of the network structure enables us to actively
split the data into training and test sets. As the data novel to the previously selected ones are
selected next, what finally remain unselected and to be tested are all similar to the selected
data which constitutes the training set. This improves the generalization of the resulting
network to the test data. These conclusions are substantiated via results on real multi-task
data.
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Appendix

Proof of Theorem 1:. Let φnew = [φ, φN+1]T . By (3), theA matrices corresponding toφnew are

A
new
k =

∑Jk

i=1

[
φik

φN+1
ik

] [
φT

ik φN+1
ik

]
+ ρ I(N+2)×(N+2) =

[
Ak ck

cT
k dk

]
(A-1)

whereck anddk are as in (6). By the conditions of the theorem, the matricesAk andAnew
k are all

non-degenerate. Using the block matrix inversion formula [7] we get

(Anew
k )−1=

[
A−1

k + A−1
k ckq−1

k cT
k A−1

k −A−1
k ckq−1

k

−q−1
k cT

k A−1
k q−1

k

]
(A-2)

whereqk is as in (6). By (3), the weightswnew
k corresponding to[φT , φN+1]T are

w
new
k = (Anew

k )−1

[ ∑Jk

i=1 yikφik∑Jk

i=1 yikφN+1
ik

]
=

[
wk + A−1

k ckq−1
k gk

−q−1
k gk

]
(A-3)

with gk = cT
k wk −

∑Jk

i=1yikφN+1
ik . Hence, (φnew

ik )T wnew
k = φT

ikwk +
(
φT

ikA
−1
k ck −

φN+1
ik

)
gkq−1

k , which is put into (4) to gete(φnew =
∑K

k=1

∑Jk

i=1

[
y2

ik − yik(φnew
ik )T wnew

k

]
=∑K

k=1

∑Jk

i=1

[
y2

ik − yikφT
ikwk − yik

(
φT

ikA
−1
k ck − φN+1

ik

)
gkq−1

k

]
= e(φ) −

∑K

k=1

(
cT

k wk −∑Jk

i=1yikφN+1
ik

)2
q−1

k , where in arriving the last equality we have used (3) and (4) andgk =

cT
k wk −

∑Jk

i=1yikφN+1
ik . The theorem is proved. �

Proof of Theorem 2: The proof applies tok = 1, · · · , K. For any givenk, defineΦ =[
φ(x1k), . . . , φ(xJkk)

]
, Φ̃ =

[
φ(xJk+1,k), . . . , φ(x

Jk+J̃k,k
)
]
, yk = [y1k, . . . , yJkk]T , ỹk =

[yJk+1,k, . . . , y
Jk+J̃k,k

]T , fk = [f(x1k), . . . , f(xJkk)]T , f∼k = [f∼

k (x1k), . . . , f∼

k (xJkk)]T ,

and Ãk = ρI + Φ̃kΦ̃
T

k . By (1), (3), and the conditions of the theorem,fk = ΦT
k

(
Ãk +

ΦkΦ
T
k

)
−1

(Φkyk+Φ̃ỹk)
(a)
=

[
ΦT

k Ã−1
k −

(
ΦT

k Ã−1
k Φk+I−I

)(
I+ΦT

k Ã−1
k Φk

)
−1

ΦT
k Ã−1

k

][
Φkyk+

Φ̃kỹk

]
=

[(
I + ΦT

k Ã−1
k Φk

)
−1

ΦT
k Ã−1

k

][
Φ̃kỹk + Φkyk

] (b)
=

(
I + ΦT

k Ã−1
k Φk

)
−1

f∼k +
(
I +

ΦT
k Ã−1

k Φk

)
−1(

ΦT
k Ã−1

k Φk + I − I
)
yk = yk +

(
I + ΦT

k Ã−1
k Φk

)
−1(

f∼k − yk

)
, where equa-

tion (a) is due to the Sherman-Morrison-Woodbury formula and equation(b) results because
f∼k = ΦT

k Ã−1
k Φ̃kỹk. Hence,fk − yk =

(
I + ΦT

k Ã−1
k Φk

)
−1(

f∼k − yk

)
, which gives

∑Jk

i=1 (yik − fk(xik))2 = (fk − yk)T (fk − yk) =
(
f
∼

k − yk

)T
Γ

−1
k

(
f
∼

k − yk

)
(A-4)

whereΓk =
[
I + ΦT

k Ã−1
k Φk

]2
=

[
I + ΦT

k (ρ I + Φ̃kΦ̃
T

k )−1Φk

]2
.

By construction,Γk has all its eigenvalues no less than 1, i.e.,Γk = ET
k diag[λ1k, · · · , λJkk]Ek with

ET
k Ek = I andλ1k, · · · , λJkk ≥ 1, which makes the first, second, and last inequality in (7) hold.

Using this expansion ofΓk in (A-4) we get
∑Jk

i=1 (fk(xik) − yik)2 =
(
f
∼

k − yk

)T
E

T
k diag[σ−1

1k , . . . , σ
−1
Jkk ]

(
f
∼

k − yk

)

≤
(
f
∼

k − yk

)T
E

T
k

[
λ
−1
min,k I

]
Ek

(
f
∼

k − yk

)
= λ

−1
min,k

∑Jk

i=1(f
∼

k (xik) − yik)2 (A-5)

where the inequality results becauseλmin,k = min(λ1,k, · · · , λJk,k). From (A-5) follows the
fourth inequality in (7). The third inequality in (7) can be proven in in a similar way. �


