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Abstract

While classical experiments on spike-timing dependent plasticity ana-
lyzed synaptic changes as a function of the timing ofpairs of pre- and
postsynaptic spikes, more recent experiments also point to the effect of
spike triplets. Here we develop a mathematical framework that allows
us to characterize timing based learning rules. Moreover, we identify a
candidate learning rule with five variables (and 5 free parameters) that
captures a variety of experimental data, including the dependence of po-
tentiation and depression upon pre- and postsynaptic firing frequencies.
The relation to the Bienenstock-Cooper-Munro rule as well as to some
timing-based rules is discussed.

1 Introduction

Most experimental studies of Spike-Timing Dependent Plasticity (STDP) have focused on
the timing of spike pairs [1, 2, 3] and so do many theoretical models. The spike-pair
based models can be divided into two classes: either all pairs of spikes contribute in a
homogeneous fashion [4, 5, 6, 7, 8, 9, 10] (called ‘all-to-all’ interaction in the following)
or only pairs of ‘neighboring’ spikes [11, 12, 13] (called ‘nearest-spike’ interaction in the
following); cf. [14, 15]. Apart from these phenomenological models, there are also models
that are somewhat closer to the biophysics of synaptic changes [16, 17, 18, 19].

Recent experiments have furthered our understanding of timing effects in plasticity and
added at least two different aspects: firstly, it has been shown that the mechanism of po-
tentiation in STDP is different from that of depression [20] and secondly, it became clear
that not only the timing of pairs, but also of triplets of spikes contributes to the outcome of
plasticity experiments [21, 22].

In this paper, we introduce a learning rule that takes these two aspects partially into account
in a simple way. Depression is triggered bypairs of spikes withpost-before-pre timing,
whereas potentiation is triggered bytriplets of spikes consisting of 1 pre- and 2 postsynaptic
spikes. Moreover, in our model the pair-based depression includes an explicit dependence
upon the mean postsynaptic firing rate. We show that such a learning rule accounts for two
important stimulation paradigms:

P1 (Relative Spike Timing):Both the pre- and postsynaptic spike trains consist of a burst



of N spikes at regular intervals T , but the two spike trains are shifted by a time ∆t =
tpost − tpre.

The total weight change is a function of the relative timing∆t (this gives the standard
STDP function), but also a function of the firing frequencyρ = 1/T during the burst; cf.
Fig. 1A (data from L5 pyramidal neurons in visual cortex).

P2 (Poisson Firing):The pre- and postsynaptic spike trains are generated by two indepen-
dent Poisson processes with rates ρx and ρy respectively.

Protocol P2 has less experimental support but it helps to establish a relation to the
Bienenstock-Cooper-Munro (BCM) model [23]. To see that relation, it is useful to plot
the weight change as a function of the postsynaptic firing rate, i.e.,∆w ∝ φ(ρy) (cf. Fig
1B). Note that the functionφ has only been measured indirectly in experiments [24, 25].

We emphasize that in the BCM model,

∆w = ρxφ(ρy, ρ̄y) (1)

the functionφ depends not only on the current firing rateρy, but also on themean firing rate
ρ̄y averaged over the recent past which has the effect that the threshold between depression
and potentiation is not fixed but dynamic. More precisely, this thresholdθ depends non-
linearly on the mean firing ratēρy:

θ = αρ̄p
y, p > 1 (2)

with parametersα andp. Previous models of STDP have already discussed the relation
of STDP to the BCM rule [16, 12, 17, 26], but none of these seems to be completely
satisfactory as discussed in Section 4. We will also compare our results to the rule of [21]
which was together with the work of [16] amongst the first triplet rules to be proposed.
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Figure 1:A. Weight change in an experiment on cortical synapses using pairing protocol (P1) (solid
line: ∆t = 10 ms, dot-dashed line∆t = −10 ms) as a function of the frequencyρ. Figure redrawn
from [11]. B. Weight change in protocol P2 according to the BCM rule forθ = 20, 30, 40 Hz.

2 A Framework for STDP

Several learning rules in the modeling literature can be classified according to the two
criteria introduced above: (i) all-to-all interaction vs. nearest spike interaction; (ii) pair-
based vs. triplet based rules. Point (ii) can be elaborated further in the context of an
expansion (pairs, triplets, quadruplets, ... of spikes) that we introduce now.

2.1 Volterra Expansion (‘all-to-all’)

For the sake of simplicity, we assume that weight changes occur at the moment of presy-
naptic spike arrival or at the moment of postsynaptic firing. The direction and amplitude



of the weight change depends on the configuration of spikes in the presynaptic spike train
X(t) =

∑

k δ(t − tkx) and the postsynaptic spike trainY (t) =
∑

k δ(t − tky). With some
arbitrary functionalsF [X,Y ] andG[X,Y ], we write (see also [8])

ẇ(t) = X(t)F [X,Y ] + Y (t)G[X,Y ] (3)

Clearly, there can be other neuronal variables that influence the synaptic dynamics. For
example, the weight change can depend on the current weight valuew [8, 15, 10], the
Ca2+ concentration [17, 19], the depolarization [25, 27, 28], the mean postsynaptic firing
rate ρ̄y(t) [23],. . . . Here, we will consider only the dependence upon the history of the
pre- and postsynaptic firing times and the mean postsynaptic firing rateρ̄y. Note that even
if ρ̄y depends via a low-pass filterτρ ˙̄ρy = −ρ̄y + Y (t) on the past spike trainY of the
postsynaptic neuron, the description of the problem will turn out to be simpler if the mean
firing rate is considered as a separate variable. Therefore, let us write the instantaneous
weight change as

ẇ(t) = X(t)F ([X,Y ], ρ̄y(t)) + Y (t)G([X,Y ], ρ̄y(t)) (4)

The goal is now to determine the simplest functionalsF andG that would be consistent
with the experimental protocolsP1 andP2 introduced above. Since the functionals are
unknown, we perform a Volterra expansion ofF andG in the hope that a small number of
low-order terms are sufficient to explain a large body of experimental data. The Volterra
expansion [29] of the functionalG can be written as1

G([X,Y ]) = Gy
1 +

∫

∞

0

Gxy
2 (s)X(t − s)ds +

∫

∞

0

Gyy
2 (s)Y (t − s)ds

+

∫

∞

0

∫

∞

0

Gxxy
3 (s, s′)X(t − s)X(t − s′)ds′ds

+

∫

∞

0

∫

∞

0

G
xyy
3 (s, s′)X(t − s)Y (t − s′)ds′ds

+

∫

∞

0

∫

∞

0

Gyyy
3 (s, s′)Y (t − s)Y (t − s′)ds′ds + . . . (5)

Similarly, the expansion ofF yields

F ([X,Y ]) = F x
1 +

∫

∞

0

F xx
2 (s)X(t − s)ds +

∫

∞

0

F
xy
2 (s)Y (t − s)ds + . . . (6)

Note that the upper index in functions represents the type of interaction. For example,Gxyy
3

(in bold face above) refers to a triplet interaction consisting of 1 pre- and 2 postsynaptic
spikes. Note that theGxyy

3 term could correspond to apre-post-post sequence as well as
a post-pre-post sequence. Similarly the termF xy

2 picks up the changes caused by arrival
of a presynaptic spike after postsynaptic spike firing. Several learning rules with all-to-all
interaction can be classified in this framework, e.g. [5, 6, 7, 8, 9, 10].

2.2 Our Model

Not all term in the expansion need to be non-zero. In fact, in the results section we will
show that a learning rule withGxyy

3 (s, s′) ≥ 0 for all s, s′ > 0 andF xy
2 (s) ≤ 0 for s > 0

and all other terms set to zero is sufficient to explain the results from protocols P1 and P2.
Thus, in our learning rule an isolated pair of spikes in configurationpost-before-pre will
lead to depression. An isolated spike pairpre-before-post, on the other hand, would not be
sufficient to trigger potentiation, whereas a tripletpre-post-post or post-pre-post will do so
(see Fig. 2).

1For the sake of clarity we have omitted the dependence onρ̄y.
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Figure 2:A. Triplet interaction for LTPB. Pair interaction for LTD.

To be specific, we consider

F xy
2 (s) = −A−(ρ̄y)e

−
s

τ
− and Gxyy

3 (s, s′) = A+e
−

s

τ+ e
−

s
′

τy . (7)

Such an exponential model can be implemented by a mechanistic update involving three
variables (the dot denotes a temporal derivative)

ȧ = −
a

τ+

; if t = tkx then a → a + 1

ḃ = −
b

τ−
; if t = tky then b → b + 1 (8)

ċ = −
c

τy

; if t = tky then c → c + 1

The weight update is then

ẇ(t) = −A−(ρ̄y)X(t)b(t) + A+Y (t)a(t)c(t). (9)

2.3 Nearest Spike Expansion (truncated model)

Following ideas of [11, 12, 13], the expansion can also be restricted to neighboring spikes
only. Let us denote byfy(t) the firing time of the last postsynaptic spike before timet.
Similarly, fx(t′) denotes the timing of the last presynaptic spike precedingt′. With this
notation the Volterra expansion of the preceding section can be repeated in a form that only
nearest spikes play a role. A classification of the models [11, 12, 13] is hence possible.

We focus immediately on the truncated version of our model

ẇ(t) = X(t)F xy
2 (t − fy(t), ρ̄y(t)) + Y (t)Gxyy

3 (t − fx(t), t − fy(t)) (10)

The mechanistic model that generates the truncated version of the model is similar to Eq. (8)
except that under the appropriate update condition, the variable goes to one, i.e.a → 1, b →
1 andc → 1. The weight update is identical to that of the all-to-all model, Eq. (9).

3 Results

One advantage of our formulation is that we can derive explicit formulas for the total weight
changes induced by protocols P1 and P2.

3.1 All-to-all Interaction

If we use protocol P1 with a total ofN pre- and postsynaptic spikes at frequencyρ shifted
by a time∆t, then the total weight change∆w is for our model with all-to-all interaction

∆w = A+

N−1
∑

k=0

N−1
∑

k′=1

(N − max(k, k′)) exp

(

−
k/ρ + ∆t

τ+

)

exp

(

−
k′

τyρ

)

λk(−∆t)

− A−(ρ̄y)
N−1
∑

k=0

(N − k) exp

(

−
k/ρ − ∆t

τ−

)

λk(∆t) (11)



whereλk(∆t) = 1− δk0Θ(∆t) with Θ the Heaviside step function. The results are plotted
in Fig. 3 top-left forN = 60 spikes.
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Figure 3:Triplet learning rule. Summary of all results of protocolP1 (left) andP2 (right) for an
all-to-all (top) and nearest-spike (bottom) interaction scheme. For the left column, the upper thick
lines correspond to positive timing (∆t > 0) while the lower thin lines to negative timing. Dashed
line: ∆t = ±2 ms, solid line:∆t = ±10 ms and dot-dashed line∆t = ±30 ms. The error bars
indicate the experimental data points of Fig. 1A. Right column: dashed-lineρ̄y = 8 Hz, solid line
ρ̄y = 10 Hz and dot-dashed linēρy = 12 Hz. Top:τy = 200 ms, bottom:τy = 40 ms.

The mean firing ratēρy reflects the firing activity during the recent past (i.e.before the start
of the experiment) and is assumed as fixed during the experiment. The exact value does not
matter. Overall, the frequency dependence of changes∆w is very similar to that observed
in experiments. IfX andY are independent Poisson process, the protocol P2 gives a total
weight change that can be calculated using standard arguments [8]

〈ẇ〉 = −A−(ρ̄y)ρxρyτ− + A+ρxρ2
yτ+τy (12)

As before, the mean firing ratēρy reflects the firing activity during the recent past and is
assumed as fixed during the experiment. In order to implement a sliding threshold as in the
BCM rule, we takeA−(ρ̄y) = β−ρ̄2

y/ρ2
0 where we setρ0 = 10 Hz. This yields a frequency

dependent thresholdθ(ρ̄y) = β−τ−ρ̄2
y/(A+τ+τyρ2

0). As can be seen in Fig. 3 top-right our
model exhibits all essential features of a BCM rule.

3.2 Nearest Spike Interaction

We now apply protocols P1 and P2 to our truncated rule, i.e. restricted to thenearest-spike
interaction; cf. Eq. (10) where the expression ofF xy

2 andGxyy
3 are taken from Eq. (7). The

weight change∆w for the protocolP1 can be calculated explicitly and is plotted in Fig. 3
bottom-left. For protocolP2 (see Fig. 3 bottom-right) we find

〈ẇ〉 = ρx

(

−
A−(ρ̄y)ρy

ρy + α−

+
A+

ρx + α+

ρ2
y

ρy + αy

)

(13)

whereαy = τ−1
y . If we assume thatρx � αx, Eq. (13) is a BCM learning rule.



In summary, both versions of our learning rule (all-to-all ornearest-spike) yield a fre-
quency dependence that is consistent with experimental results under protocol P1 and with
the BCM rule tested under protocol P2. We note that our learning rule contains only two
terms, i.e., a triplet term (1 pre and 2 post) for potentiation and apost-pre pair term for
depression. The dynamics is formulated using five variables (a, b, c,ρ̄y, w) and five param-
eters (τ+, τ−, τy, A+, β−). τ+ = 16.8 ms andτ− = 33.7 ms are taken from [14].A+

andβ− are chosen such that the weight changes for∆t = ±10 ms andρ = 20 Hz fit the
experimental data [11].

4 Discussion - Comparison with Other Rules

While we started out developing a general framework, we focused in the end on a simple
model with only five parameters - why, then, this model and not some other combination
of terms? To answer this question we apply our approach to a couple of other models, i.e.,
pair-based models (all-to-all or nearest spike), triplet-based models, and others.

4.1 STDP Models Based on Spike Pairs

Pair-based models with all-to-all interaction [4, 5, 6, 7, 8, 9, 10] yield under Poisson stim-
ulation (protocol P2) a total weight change that is linear in presynaptic and postsynaptic
frequencies. Thus, as a function of postsynaptic frequency we always find a straight line
with a slope that depends on the integral of the STDP function [5, 7]. Thus pair-based
models with all-to-all interaction need to be excluded in view of BCM features of plasticity
[25, 24].
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Figure 4:Pair learning rule in a nearest spike interaction scheme (top) and Froemke-Dan rule (bot-
tom). For the left column, the higher thick lines correspond to positive timing (∆t >0) while the
lower thin lines to negative timing. Dashed line:∆t = ±2 ms, solid line: ∆t = ±10 ms and
dot-dashed line∆t = ±30 ms. Right column: dashed-linēρy = 8 Hz, solid lineρ̄y = 10 Hz and
dot-dashed linēρy = 12 Hz. The parameters of the F-D model are taken from [21]. The dependence
uponρ̄y has been added to the original F-D rule (A

−
→ β

−
ρ̄2

y/ρ2

0).

A pair-based model with nearest-spike interaction, however, can give a non-linear depen-
dence upon the postsynaptic frequency under protocol P2 with fixed threshold between



depression and potentation [12]. We can go beyond the resultsof [12] by adding a suitable
dependence of the parameterA− uponρ̄y which yields a sliding threshold; cf. Fig. 4 top
right.

But even a pair rule restricted to nearest-spike interaction is unable to account for the results
of protocol P1. An important feature of the experimental results with protocol P1 is that
potentiation only occurs above a minimal firing frequency of the postsynaptic neuron (cf.
Fig. 1A) whereas pair-based rulesalways exhibit potentiation with pre-before-post timing
even in the limit of low frequencies; cf. Fig. 4 top left. The intuitive reason is that at
low frequency the total weight change is proportional to the number ofpre-post pairings
and this argument can be directly transformed into a mathematical proof (details omitted).
Thus, pair-based rules of potentiation (all-to-all or nearest spike) cannot account for results
of protocol P1 and must be excluded.

4.2 Comparison with Triplet-Based Learning Rules

The model of Senn et al. [16] can well account of the results under protocol P1. A classi-
fication of this rule within our framework reveals that the update algorithm generates pair
terms of the formpre-post andpost-pre, as well as triplet terms of the formpre-post-post
andpost-pre-pre. As explained in the previous paragraph, a pair termpre-post generated
potentiation even at very low frequencies which is not realistic. In order to avoid this effect
in their model, Senn et al. included additional threshold values which increased the number
of parameters in their model to 9 [16] while the number of variables is 5 as in our model.
Moreover, the mapping of the model of Senn et al. to the BCM rule is not ideal, since the
sliding threshold is different for each individual synapse [16].

An explicit triplet rule has been proposed by Froemke and Dan [21]. In our framework,
the rule can be classified as a combination of triplet terms for potentiation and depression.
Following the same line or argument as in the preceding sections we can calculate the
total weight change for protocols P1 and P2. The result is shown in Fig. 4 bottom. We
can clearly see that the pairing experimentP1 yields a behavior opposite to the one found
experimentally and the BCM behavior is not at all reproduced in protocol P2.

4.3 Summary

We consider our model as a minimal model to account for results of protocol P1 and P2, but,
of course, several factors are not captured by the model. First, our model has no dependence
upon the current weight value, but, in principle, this could be included along the lines
of [10]. Second, the model has no explicit dependence upon the membrane potential or
calcium concentration, but the postsynaptic neuron enters only via its firing activity. Third,
and most importantly, there are other experimental paradigms that have to be taken care of.

In a recent series of experiments Bi and colleagues [22] have systematically studied the
effect of symmetric spike triplets (pre-post-preor post-pre-post) and spike quadruplets
(e.g.,pre-post-post-pre) in hippocampal cultures. While the model presented in this paper
is intended to model the synaptic dynamic for L5 pyramidal neurons in the visual cortex
[11], it is possible to consider a similar model for the hippocampus containing two extra
terms (a pair term for potentiation and and triplet term for depression).
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