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We prove the strongest known bound for the risk of hypotheses selected 
from the ensemble generated by running a learning algorithm incremen
tally on the training data. Our result is based on proof techniques that are 
remarkably different from the standard risk analysis based on uniform 
convergence arguments. 

1 Introduction 

In this paper, we analyze the risk of hypotheses selected from the ensemble obtained by 
running an arbitrary on-line learning algorithm on an i.i.d. sequence of training data. We 
describe a procedure that selects from the ensemble a hypothesis whose risk is , with high 
probability, at most 

Mn + 0 ((innn)2 + J~n Inn) , 
where Mn is the average cumulative loss incurred by the on-line algorithm on a training 
sequence of length n. Note that this bound exhibits the "fast" rate (in n)2 I n whenever the 
cumulative loss nMn is 0(1). 

This result is proven through a refinement of techniques that we used in [2] to prove the 
substantially weaker bound Mn + 0 ( J (in n) I n). As in the proof of the older result , we 
analyze the empirical process associated with a run of the on-line learner using exponential 
inequalities for martingales. However, this time we control the large deviations of the 
on-line process using Bernstein's maximal inequality rather than the Azuma-Hoeffding 
inequality. This provides a much tighter bound on the average risk of the ensemble. Finally, 
we relate the risk of a specific hypothesis within the ensemble to the average risk. As in [2], 
we select this hypothesis using a deterministic sequential testing procedure, but the use of 
Bernstein's inequality makes the analysis of this procedure far more complicated. 

The study of the statistical risk of hypotheses generated by on-line algorithms , initiated 
by Littlestone [5], uses tools that are sharply different from those used for uniform con
vergence analysis , a popular approach based on the manipulation of suprema of empirical 

' Part of the results contained in this paper have been presented in a talk given at the NIPS 2004 
workshop on "(Ab)Use of Bounds". 



processes (see, e.g., [3]). Unlike uniform convergence, which is tailored to empirical risk 
minimization , our bounds hold for any learning algorithm. Indeed, disregarding efficiency 
issues, any learner can be run incrementally on a data sequence to generate an ensemble of 
hypotheses. 

The consequences of this line of research to kernel and margin-based algorithms have been 
presented in our previous work [2]. 

Notation. An example is a pair (x , y), where x E X (which we call instance) is a data 
element and y E Y is the label associated with it. Instances x are tuples of numerical and/or 
symbolic attributes. Labels y belong to a finite set of symbols (the class elements) or to 
an interval of the real line, depending on whether the task is classification or regression. 
We allow a learning algorithm to output hypotheses of the form h : X ----> D , where D 
is a decision space not necessarily equal to y. The goodness of hypothesis h on example 
(x, y) is measured by the quantity C(h(x), y), where C : D x Y ----> lR. is a nonnegative and 
bounded loss function. 

2 A bound on the average risk 

An on-line algorithm A works in a sequence of trials. In each trial t = 1,2, ... the algo
rithm takes in input a hypothesis Ht- l and an example Zt = (Xt, yt), and returns a new 
hypothesis H t to be used in the next trial. We follow the standard assumptions in statis
tical learning: the sequence of examples zn = ((Xl , Yd , ... , (Xn , Yn)) is drawn i.i.d. 
according to an unknown distribution over X x y. We also assume that the loss function C 
satisfies 0 ::; C ::; 1. The success of a hypothesis h is measured by the risk of h, denoted by 
risk(h). This is the expected loss of h on an example (X, Y) drawn from the underlying 
distribution , risk(h) = lEC(h(X), Y). Define also riskernp(h) to be the empirical risk 
of h on a sample zn, 

1 n 

riskernp(h) = - 2: C(h(Xt ), yt) . 
n 

t =l 

Given a sample zn and an on-line algorithm A, we use Ho, HI, ... ,Hn- l to denote the 
ensemble of hypotheses generated by A. Note that the ensemble is a function of the random 
training sample zn. Our bounds hinge on the sample statistic 

which can be easily computed as the on-line algorithm is run on zn. 

The following bound, a consequence of Bernstein's maximal inequality for martingales due 
to Freedman [4], is of primary importance for proving our results. 

Lemma 1 Let L I , L2 , ... be a sequence of random variables, 0 ::; Lt ::; 1. Define the 
bounded martingale difference sequence Vi = lE[Lt ILl' ... ' Lt- l ] - Lt and the asso
ciated martingale Sn = VI + ... + Vn with conditional variance Kn = L:~=l Var[Lt I 
LI, ... ,Lt - I ]. Then,forall s,k ~ 0, 

IP' (Sn ~ s, Kn ::; k) ::; exp ( - 2k :22S/ 3 ) . 

The next proposition, derived from Lemma 1, establishes a bound on the average risk of 
the ensemble of hypotheses. 



Proposition 2 Let Ho, . .. ,Hn - 1 be the ensemble of hypotheses generated by an arbitrary 
on-line algorithm A. Then,for any 0 < 5 ::; 1, 

( 1 ~ . 36 (nMn +3 ) IP' ;:;: ~ rlsk(Ht- d ::::: Mn + ~ In 5 + 2 

The bound shown in Proposition 2 has the same rate as a bound recently proven by 
Zhang [6, Theorem 5]. However, rather than deriving the bound from Bernstein inequality 
as we do , Zhang uses an ad hoc argument. 

Proof. Let 

1 n 

f-ln = - 2: risk(Ht_d and vt - l = risk(Ht_d - C(Ht-1(Xt ), yt) for t ::::: l. 
n 

t = l 

Let "'t be the conditional variance Var(C(Ht _ 1 (Xt ) , yt) I Zl , ... , Zt - l). Also, set 
for brevity K n = 2:~= 1 "'t, K~ = l2:~= 1 "'d, and introduce the function A (x) 
2 In (X+l)}X +3) for x ::::: O. We find upper and lower bounds on the probability 

IP' (t vt - l ::::: A(Kn) + J A(Kn) Kn) . (1) 

The upper bound is determined through a simple stratification argument over Lemma 1. 
We can write 

n 

1P' (2: vt - l ::::: A(Kn) + J A(Kn) Kn) 
t = l 

n 

::; 1P' (2: vt - l ::::: A(K~) + J A(K~) K~) 
t=l 

n n 

::; 2: 1P' (2: vt - 1 ::::: A(s) + JA(s)s, K~ = s) 
s=o t = l 

n n 

::; 2: 1P' (2: vt - l ::::: A(s) + J A(s) s, Kn ::; s + 1) 
s=o t = l 

~ ( (A(s) + J A(s) s)2 ) < ~exp -~--~~-=====~~----
- s=o ~(A(s) + J A(s) s) + 2(s + 1) 

(using Lemma 1). 

Since (A(s)+~)2 > A(s)/2 for all s > 0 we obtain 
HA(s) +VA(S)S) +2(S+1) - - , 

(1) < t e- A (s)/2 = t 5 < 5. 
- s=o s=o (s + l)(s + 3) 

(2) 

As far as the lower bound on (1) is concerned, we note that our assumption 0 ::; C ::; 1 
implies "'t ::; risk(Ht_d for all t which, in tum, gives Kn ::; nf-ln. Thus 

(1) = IP' ( nf-ln - nMn ::::: A(Kn) + J A(Kn) Kn) 

::::: IP' ( nf-ln - nMn ::::: A(nf-ln) + J A(nf-ln) nf-ln) 

= IP' ( 2nf-ln ::::: 2nMn + 3A(nf-ln) + J4nMn A(nf-ln) + 5A(nf-lnF ) 

= lP' ( x::::: B + ~A(x) + JB A(x) + ~A2(x) ) , 



where we set for brevity x = nf-ln and B = n Mn. We would like to solve the inequality 

x ~ B + ~A(x) + VB A(x) + ~A2(X) (3) 

W.r.t. x . More precisely, we would like to find a suitable upper bound on the (unique) x* 
such that the above is satisfied as an equality. 

A (tedious) derivative argument along with the upper bound A(x) ::; 4 In (X!3) show that 

x' = B + 2 VB In ( Bt3) + 36ln ( Bt3) 

makes the left-hand side of (3) larger than its right-hand side. Thus x' is an upper bound 
on x* , and we conclude that 

which, recalling the definitions of x and B, and combining with (2), proves the bound. D 

3 Selecting a good hypothesis from the ensemble 

If the decision space D of A is a convex set and the loss function £ is convex in its first 
argument, then via Jensen's inequality we can directly apply the bound of Proposition 2 to 
the risk of the average hypothesis H = ~ L~=I H t - I . This yields 

lP' (riSk(H) ~ Mn + ~ In (nM~ + 3) + 2 ~n In (nM~ + 3) ) ::; 6. (4) 

Observe that this is a O(l/n) bound whenever the cumulative loss n Mn is 0(1). 

If the convexity hypotheses do not hold (as in the case of classification problems), then 
the bound in (4) applies to a hypothesis randomly drawn from the ensemble (this was 
investigated in [1] though with different goals). 

In this section we show how to deterministically pick from the ensemble a hypothesis 
whose risk is close to the average ensemble risk. 

To see how this could be done, let us first introduce the functions 

Er5(r, t) = 3(!~ t) + J ~~rt and cr5(r, t) = Er5 (r + J ~~rt' t) , 

'th B-1 n(n+2) WI - n r5 . 

Let riskemp(Ht , t + 1) + Er5 (riskemp(Ht, t + 1), t) be the penalized empirical risk of 
hypothesis H t , where 

1 n 

riskemp(Ht , t + 1) = -- " £(Ht(Xi), Xi) n - t ~ 
i=t+1 

is the empirical risk of H t on the remaining sample Zt+ l, ... , Z]1' We now analyze the per
formance of the learning algorithm that returns the hypothesis H minimizing the penalized 
risk estimate over all hypotheses in the ensemble, i.e., I 

ii = argmin( riskemp(Ht , t + 1) + Er5 (riskemp(Ht , t + 1), t)) . (5) 
O::; t <n 

I Note that, from an algorithmic point of view, this hypothesis is fairly easy to compute. In par
ticular, if the underlying on-line algorithm is a standard kernel-based algorithm, fj can be calculated 
via a single sweep through the example sequence. 



Lemma 3 Let Ho , ... , H n - 1 be the ensemble of hypotheses generated by an arbitrary on
line algorit~m A working with a loss £ satisfying 0 S £ S 1. Then,for any 0 < b S 1, the 
hypothesis H satisfies 

lP' (risk(H) > min (risk(Ht ) + 2 c8(risk(Ht ) , t))) S b . 
O::; t <n 

Proof. We introduce the following short-hand notation 

riskemp(Ht , t + 1) , f = argmin (Rt + £8(Rt , t)) 
O::; t <n 

T * argmin (risk(Ht ) + 2c8 (risk(Ht ), t)) . 
O::; t <n 

Also, let H * = H T * and R * = riskemp(HT * , T * + 1) = R T * . Note that H defined 
in (5) coincides with Hi' . Finally, let 

Q( ) = y'2B(2B + 9r(n - t)) - 2B 
r, t () . 3 n - t 

With this notation we can write 

lP' ( risk(H) > risk(H*) + 2c8(risk(H*), T *)) 

< lP' ( risk(H) > risk(H*) + 2C8 (R* - Q(R*, T *), T *)) 

+ lP' (riSk(H*) < R * - Q(R*, T *)) 

< lP' ( risk(H) > risk(H*) + 2C8 (R* - Q(R*, T *), T *) ) 

+ ~ lP' ( risk(Ht ) < R t - Q(Rt , t)) . 

Applying the standard Bernstein's inequality (see, e.g. , [3 , Ch. 8]) to the random variables 
R t with IRt l S 1 and expected value risk(Ht ), and upper bounding the variance of R t 
with risk(Ht ), yields 

( . () B + y'B(B + 18(n - t)risk(Ht ))) - B 
lP' r~sk H t < R t - () S e . 

3 n - t 

With a little algebra, it is easy to show that 

. () B + y'B(B + 18(n - t)risk(Ht )) 
r~sk H t < R t - () 3 n - t 

is equivalent to risk(Ht ) < R t - Q(Rt , t). Hence, we get 

lP' ( risk(H) > risk(H*) + 2c8(risk(H*), T *)) 

< lP' (risk(H) > risk(H*) + 2C8 (R* - Q(R*, T *),T *) ) + n e- B 

< lP' (risk(H) > risk(H*) + 2£8(R*, T *)) + n e-B 



where in the last step we used 

~B'r 
Q('r, t) ::; -

n - t 
and 

Set for brevity E = Eo (R* , T *) . We have 

IP' ( risk(H) > risk(H*) + 2E) 

Co ( 'I' - J ~~'rt' t) = Eo ('I' , t) . 

IP' ( risk(H) > risk(H*) + 2E , R f + Eo (Rf' T) ::; R * + E) 

(since Rf + Eo(Rf, T) ::; R * + E holds with certainty) 

< ~ IP' ( R t + Eo(Rt , t) ::; R * + E, risk(Ht ) > risk(H*) + 2E). (6) 

Now, if R t + Eo (Rt, t) ::; R * + E holds, then at least one of the following three conditions 

R t ::; risk(Ht ) - Eo(Rt , t) , R * > risk(H*) + E, risk(Ht ) - risk(H*) < 2E 

must hold. Hence, for any fixed t we can write 

IP' ( R t + Eo(Rt, t) ::; R * + E, risk(Ht ) > risk(H*) + 2E) 

< IP' ( R t ::; risk(Ht ) - Eo(Rt , t) , risk(Ht ) > risk(H*) + 2E) 

+IP' ( R * > risk(H*) + E, risk(Ht ) > risk(H*) + 2E) 

+IP' ( risk(Ht ) - risk(H*) < 2E , risk(Ht ) > risk(H*) + 2E) 

< IP' ( R t ::; risk(Ht ) - Eo(Rt , t)) +IP' ( R * > risk(H*) + E) . (7) 

Plugging (7) into (6) we have 

IP' (risk(H) > risk(H*) + 2E) 

< ~ IP' ( R t ::; risk(Ht ) - Eo(Rt, t)) +n IP' ( R * > risk(H*) + E) 

< n e-B + n ~IP' ( R t 2: risk(Ht ) + Eo(Rt,t)) ::; n e-B + n 2 e-B , 

where in the last two inequalities we applied again Bernstein 's inequality to the random 
variables R t with mean risk(Ht ). Putting together we obtain 

lP' (risk(H) > risk(H*) + 2co(risk(H*), T *)) ::; (2n + n 2 )e- B 

which, recalling that B = In n(no+2) , implies the thesis. D 

Fix n 2: 1 and 15 E (0 ,1). For each t = 0, ... , n - 1, introduce the function 

f() llCln(n -t) + 1 m,cx 
tX =x+- + 2 --, x2:0, 

3 n-t n-t 

where C = In 2n(~+2) . Note that each ft is monotonically increasing. We are now ready 
to state and prove the main result of this paper. 



Theorem 4 Fix any loss function C satisfying 0 ::; C ::; 1. Let H 0 , ... , H n-;:..l be the ensem
ble of hypotheses generated by an arbitrary on-line algorithm A and let H be the hypoth
esis minimizing the penalized empirical risk expression obtained by replacing C8 with C8/2 

in (5). Then,for any 0 < 15 ::; 1, ii satisfies 

( 
~ ( 36 2n(n+3) 

IP' risk(H) ;::: min ft Mt,n + --In 15 + 2 t,n 8 < 15 M In 2n(n+3) )) 
t - , O<C;Vn n - t n -

where Mt ,n = n~t L:~=t+l C(Hi- 1 (Xi)' Xi). In particular, upper bounding the minimum 
over t with t = 0 yields 

( 
~ ( 36 2n(n + 3) 

IP' risk(H) ;::: fo Mn + -:;:; In 15 + 2 
M In 2n(n+3) )) 

n 8 < J. 
n - (8) 

For n ---+ 00, bound (8) shows that risk(ii) is bounded with high probability by 

Mn+O Cn:n + VMn~nn) . 

If the empirical cumulative loss n Mn is small (say, Mn ::; cln, where c is constant with n), 
then our penalized empirical risk minimizer ii achieves a 0 ( (In 2 n) In) risk bound. Also, 
recall that, in this case, under convexity assumptions the average hypothesis H achieves 
the sharper bound 0 (1 In) . 

Proof. Let Mt ,n = n~t L:~:/ risk(Hi ). Applying Lemma 3 with C8/2 we obtain 

lP' (risk(ii) > min (risk(Ht ) + c8/2(risk(Ht), t)))::; i . (9) 
O<C; t<n 2 

We then observe that 

min (risk(Ht ) + c8/2(risk(Ht ), t)) 
O.:;t<n 

min min (risk(Hi ) + c8/2(risk(Hi ), i)) 
O<C; t<n t<C;2<n 

n-l 

< min _ 1_ "(risk(Hi ) + c8 /2 (risk(Hi ), i)) 
O<t<n n - t ~ 

< 

< 

- i=t 

min Mt + -- ,,--- + -- " ( 
1 n- l 8 0 1 n- l ( 

O.:;t<n ,n n - t {;;; 3 n - i n - t {;;; 

(using the inequality Vx + y ::; ,jX + 2:/x ) 

min Mt + -- " - -- + -- " ( 
1 n-l 11 0 1 n-l 

O.:;t<n ,n n - t {;;; 3 n - i n - t {;;; 

. ( 110 In(n-t)+1 V20Mt,n) mm Mt n + -- + 2 ---
O.:;t<n ' 3 n - t n - t 

(using L:7=1 I ii::; 1 + In k and the concavity of the square root) 

min ft(Mt n) . 
O<C; t<n ' 



Now, it is clear that Proposition 2 can be immediately generalized to imply the following 
set of inequalities , one for each t = 0, ... , n - 1, 

( 36 A J Mt n A) 0 IP' /Jt n ~ M t n + -- + 2 --' - s-
, , n - t n - t 2n 

(10) 

where A = In 2n(~+3) . Introduce the random variables K o, ... ,Kn - 1 to be defined later. 
We can write 

IP' ( min (riSk(Ht ) + c8/2(risk(Ht ) , t)) ~ min Kt) 
O:'S: t<n O:'S: t<n 

SIP' ( min !t(/Jt n ) ~ min K t ) S ~ IP' (!t(/Jt n ) ~ K t ) O<t<n ' O<t<n ~ , - - t=O 

Now, for each t = 0, ... , n - l, define K t = ft ( Mt ,n + ~6_1 + 2 J M~:':./) . Then (10) 

and the monotonicity of fo, .. . , f n- l allow us to obtain 

IP' ( min (risk(Ht ) + c8/2(risk(Ht ) , t)) ~ min Kt) 
O:'S: t<n O:'S: t<n 

n- l ( (36 A (iVf;;A)) < ~ IP' ft(/Jt ,n) ~ !t Mt ,n + n _ t + 2 V ~ 

n- l ( 36 A (iVf;;A) 
~ IP' /Jt ,n ~ Mt ,n + n _ t + 2 V ~ S 0/ 2 . 

Combining with (9) concludes the proof. D 

4 Conclusions and current research issues 

We have shown tail risk bounds for specific hypotheses selected from the ensemble gen
erated by the run of an arbitrary on-line algorithm. Proposition 2, our simplest bound, is 
proven via an easy application of Bernstein's maximal inequality for martingales, a quite 
basic result in probability theory. The analysis of Theorem 4 is also centered on the same 
martingale inequality. An open problem is to simplify this analysis, possibly obtaining a 
more readable bound. Also, the bound shown in Theorem 4 contains In n terms. We do not 
know whether these logarithmic terms can be improved to In(Mnn) , similarly to Propo
sition 2. A further open problem is to prove lower bounds, even in the special case when 
n Mn is bounded by a constant. 
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