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Abstract

The misjudgement of tilt in images lies at the heart of entertaining vi-
sual illusions and rigorous perceptual psychophysics. A wealth of find-
ings has attracted many mechanistic models, but few clear computational
principles. We adopt a Bayesian approach to perceptual tilt estimation,
showing how a smoothness prior offers a powerful way of addressing
much confusing data. In particular, we faithfully model recent results
showing thatconfidencein estimation can be systematically affected by
the same aspects of images that affect bias. Confidence is central to
Bayesian modeling approaches, and is applicable in many other percep-
tual domains.

Perceptual anomalies and illusions, such as the misjudgements of motion and tilt evident
in so many psychophysical experiments, have intrigued researchers for decades.1–3 A
Bayesian view4–8 has been particularly influential in models of motion processing, treating
such anomalies as the normative product of prior information (often statistically codify-
ing Gestalt laws) with likelihood information from the actual scenes presented. Here, we
expand the range of statistically normative accounts to tilt estimation, for which there are
classes of results (on estimation confidence) that are so far not available for motion.

The tilt illusion arises when the perceived tilt of a center target is misjudged (ie bias) in
the presence of flankers. Another phenomenon, called Crowding, refers to a loss in the
confidence (ie sensitivity) of perceived target tilt in the presence of flankers. Attempts
have been made to formalize these phenomena quantitatively. Crowding has been modeled
as compulsory feature pooling (ieaveraging of orientations), ignoring spatial positions.9,10

The tilt illusion has been explained by lateral interactions11,12 in populations of orientation-
tuned units; and bycalibration.13

However, most models of this form cannot explain a number of crucial aspects of the data.
First, thegeometryof the positional arrangement of the stimuli affects attraction versus
repulsion in bias, as emphasized by Kapadiaet al14 (figure 1A), and others.15,16 Second,
Solomon et al. recently measured biasand sensitivity simultaneously.11 The rich and
surprising range of sensitivities, far from flat as a function of flanker angles (figure 1B),
are outside the reach of standard models. Moreover, current explanations do not offer a
computational account of tilt perception as the outcome of a normative inference process.

Here, we demonstrate that a Bayesian framework for orientation estimation, with a prior
favoring smoothness, can naturally explain a range of seemingly puzzling tilt data. We
explicitly consider both the geometry of the stimuli, and the issue of confidence in the esti-
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Figure 1: Tilt biases and sensitivities in visual perception.(A) Kapadiaet al demonstrated the
importance of geometry on tilt bias, with bar stimuli in the fovea (and similar results in the
periphery). When 5 degrees clockwise flankers are arranged colinearly, the center target appears
attracted in the direction of the flankers; when flankers are lateral, the target appears repulsed.
Data are an average of 5 subjects.14 (B) Solomonet al measured both biases and sensitivities
for gratings in the visual periphery.11 On the top are example stimuli, with flankers tilted 22.5
degrees clockwise. This constitutes the classic tilt illusion, with a repulsive bias percept. In
addition, sensitivities vary as a function of flanker angles, in a systematic way (even in cases
when there are no biases at all). Sensitivities are given in units of the inverse of standard deviation
of the tilt estimate. More detailed data for both experiments are shown in the results section.

mation. Bayesian analyses have most frequently been applied to bias. Much less attention
has been paid to the equally important phenomenon of sensitivity. This aspect of our model
should be applicable to other perceptual domains.

In section 1 we formulate the Bayesian model. The prior is determined by the principle of
creating a smooth contour between the target and flankers. We describe how to extract the
bias and sensitivity. In section 2 we show experimental data of Kapadiaet aland Solomon
et al, alongside the model simulations, and demonstrate that the model can account for both
geometry, and bias and sensitivity measurements in the data. Our results suggest a more
unified, rational, approach to understanding tilt perception.

1 Bayesian model

Under our Bayesian model, inference is controlled by the posterior distribution over the
tilt of the target element. This comes from the combination of a prior favoring smooth
configurations of the flankers and target, and the likelihood associated with the actual scene.
A complete distribution would consider all possible angles and relative spatial positions of
the bars, and marginalize the posterior over all but the tilt of the central element. For
simplicity, we make two benign approximations: conditionalizing over (ieclamping) the
anglesof the flankers, and exploring only a small neighborhood of their positions. We now
describe the steps of inference.

Smoothness prior:Under these approximations, we consider a givenactualconfiguration
(see fig 2A) of flankersf1 =(φ1, x1), f2 =(φ2, x2) and center targetc=(φc, xc), arranged
from top to bottom. We have to generate a prior overφc andδ1 =x1 − xc andδ2 =x2 − xc

based on the principle of smoothness. As a less benign approximation, we do this in two
stages: articulating a principle that determines a single optimal configuration; and generat-
ing a prior as a mixture of a Gaussian about this optimum and a uniform distribution, with
the mixing proportion of the latter being determined by the smoothness of the optimum.

Smoothness has been extensively studied in the computer vision literature.17–20 One widely
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Figure 2: Geometry and smoothness for flankers,f1 andf2, and center target,c. (A) Example
actual configuration of flankers and target, aligned along they axis from top to bottom.(B)
The elastica procedure can rotate the target angle (toΦc) and shift the relative flanker and target
positions on thex axis (toδ1 andδ2) in its search for the maximally smooth solution. Small
spatial shifts (up to1/15 the size ofR) of positions are allowed, but positional shift is over-
emphasized in the figure for visibility.(C) Top: center tilt that results in maximal smoothness, as
a function of flanker tilt. Boxed cartoons show examples for given flanker tilts, of the optimally
smooth configuration. Note attraction of target towards flankers for small flanker angles; here
flankers and target are positioned in a nearly colinear arrangement. Note also repulsion of target
away from flankers for intermediate flanker angles. Bottom:P [c, f1, f2] for center tilt that yields
maximal smoothness. They axis is normalized between 0 and 1.

used principle,elastica, known even to Euler, has been applied to contour completion21

and other computer vision applications.17 The basic idea is to find the curve with minimum
energy (ie, square of curvature). Sharonet al19 showed that the elastica function can be
well approximated by a number of simpler forms. We adopt a version that Leung and
Malik18 adopted from Sharonet al.19 We assume that the probability for completing a
smooth curve, can be factorized into two terms:

P [c, f1, f2] = G(c, f1)G(c, f2) (1)

with the termG(c, f1) (and similarly,G(c, f2)) written as:

G(c, f1) = exp(−
R

σR

−

Dβ

σβ

) where Dβ = β2
1 + β2

c − β1βc (2)

andβ1 (and similarly,βc) is the angle between the orientation atf1, and the line joining
f1 andc. The distance between the centers off1 andc is given byR. The two constants,
σβ andσR, control the relative contribution to smoothness of the angle versus the spatial
distance. Here, we setσβ = 1, andσR = 1.5. Figure 2B illustrates an example geometry,
in whichφc, δ1, andδ2, have been shifted from the actual scene (of figure 2A).

We now estimate the smoothest solution for given configurations. Figure 2C shows for
given flanker tilts, the center tilt that yields maximal smoothness, and the corresponding
probability of smoothness. For near vertical flankers, the spatial lability leads to very weak
attraction and high probability of smoothness. As the flanker angle deviates farther from
vertical, there is a large repulsion, but also lower probability of smoothness. These obser-
vations are key to our model: the maximally smooth center tilt will influence attractive and
repulsive interactions of tilt estimation; the probability of smoothness will influence the
relative weighting of the prior versus the likelihood.

From the smoothness principle, we construct a two dimensional prior (figure 3A). One
dimension represents tilt, the other dimension, the overall positional shift between target
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Figure 3: Bayes model for example flankers and target.(A) Prior 2D distribution for flankers
set at 22.5 degrees (note repulsive preference for -5.5 degrees).(B) Likelihood 2D distribution
for a target tilt of 3 degrees;(C) Posterior 2D distribution. All 2D distributions are drawn on
the same grayscale range, and the presence of a larger baseline in the prior causes it to appear
more dimmed.(D) Marginalized posterior, resulting in 1D distribution over tilt. Dashed line
represents the mean, with slight preference for negative angle.(E) For this target tilt, we calculate
probability clockwise, and obtain one point on psychometric curve.

and flankers (called ’position’). The prior is a 2D Gaussian distribution, sat upon a constant
baseline.22 The Gaussian is centered at the estimated smoothest target angle and relative
position, and the baseline is determined by the probability of smoothness. The baseline, and
its dependence on the flanker orientation, is a key difference from Weisset al’s Gaussian
prior for smooth, slow motion. It can be seen as a mechanism to allow segmentation (see
Posterior description below). The standard deviation of the Gaussian is a free parameter.

Likelihood: The likelihood over tilt and position (figure 3B) is determined by a 2D Gaus-
sian distribution with an added baseline.22 The Gaussian is centered at the actual target
tilt; and at a position taken as zero, since this is the actual position, to which the prior is
compared. The standard deviation and baseline constant are free parameters.

Posterior and marginalization: The posterior comes from multiplying likelihood and
prior (figure 3C) and then marginalizing over position to obtain a 1D distribution over tilt.
Figure 3D shows an example in which this distribution is bimodal. Other likelihoods, with
closer agreement between target and smooth prior, give unimodal distributions. Note that
the bimodality is a direct consequence of having an added baseline to the prior and likeli-
hood (if these were Gaussian without a baseline, the posterior would always be Gaussian).
The viewer is effectively assessing whether the target is associated with the same object as
the flankers, and this is reflected in the baseline, and consequently, in the bimodality, and
confidence estimate. We defineα as the mean angle of the 1D posterior distribution (eg,
value of dashed line on thex axis), andβ as the height of the probability distribution at
that mean angle (eg, height of dashed line). The termβ is an indication of confidence in
the angle estimate, where for larger values we are more certain of the estimate.

Decision of probability clockwise: The probability of a clockwise tilt is estimated from
the marginalized posterior:

P =
1

1 + exp
(

−α.∗k
− log(β+η)

) (3)

whereα andβ are defined as above,k is a free parameter andη a small constant. Free
parameters are set to a single constant value for all flanker and center configurations. Weiss
et aluse a similar compressive nonlinearity, but without the termβ. We also tried a decision
function that integrates the posterior, but the resulting curves were far from the sigmoidal
nature of the data.

Bias and sensitivity: For one target tilt, we generate a single probability and therefore a
single point on the psychometric function relating tilt to the probability of choosing clock-
wise. We generate the full psychometric curve from all target tilts and fit to it a cumulative
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Figure 4: Kapadiaet al data,14 versus Bayesian model. Solid lines are fits to a cumulative
Gaussian distribution.(A) Flankers are tilted 5 degrees clockwise (black curve) or anti-clockwise
(gray) of vertical, and positioned spatially in a colinear arrangement. The center bar appears
tilted in the direction of the flankers (attraction), as can be seen by the attractive shift of the
psychometric curve. The boxed stimuli cartoon illustrates a vertical target amidst the flankers.
(B) Model for colinear bars also produces attraction.(C) Data and(D) model for lateral flankers
results in repulsion. All data are collected in the fovea for bars.

Gaussian distributionN(µ, σ) (figure 3E). The meanµ of the fit corresponds to the bias,
and 1

σ
to the sensitivity, or confidence in the bias. The fit to a cumulative Gaussian and

extraction of these parameters exactly mimic psychophysical procedures.11

2 Results: data versus model

We first consider the geometry of the center and flanker configurations, modeling the full
psychometric curve for colinear and parallel flanks (recall that figure 1A showed summary
biases). Figure 4A;B demonstrates attraction in the data and model; that is, the psychome-
tric curve is shifted towards the flanker, because of the nature of smooth completions for
colinear flankers. Figure 4C;D shows repulsion in the data and model. In this case, the
flankers are arranged laterally instead of colinearly. The smoothest solution in the model
arises by shifting the target estimate away from the flankers. This shift is rather minor,
because the configuration has a low probability of smoothness (similar to figure 2C), and
thus the prior exerts only a weak effect.

The above results show examples of changes in the psychometric curve, but do not address
both bias and, particularly, sensitivity, across a whole range of flanker configurations. Fig-
ure 5 depicts biases and sensitivity from Solomonet al, versus the Bayes model. The data
are shown for a representative subject, but the qualitative behavior is consistent across all
subjects tested. In figure 5A, bias is shown, for the condition that both flankers are tilted
at the same angle. The data exhibit small attraction at near vertical flanker angles (this
arrangement is close to colinear); large repulsion at intermediate flanker angles of 22.5 and
45 degrees from vertical; and minimal repulsion at large angles from vertical. This behav-
ior is also exhibited in the Bayes model (Figure 5B). For intermediate flanker angles, the
smoothest solution in the model is repulsive, and the effect of the prior is strong enough to
induce a significant repulsion. For large angles, the prior exerts almost no effect.

Interestingly, sensitivity is far from flat in both data and model. In the data (Figure 5C),
there is most loss in sensitivity at intermediate flanker angles of22.5 and45 degrees (ie,
the subject is less certain); and sensitivity is higher for near vertical or near horizontal
flankers. The model shows the same qualitative behavior (Figure 5D). In the model, there
are two factors driving sensitivity: one is the probability of completing a smooth curvature
for a given flanker configuration, as in Figure 2B; this determines the strength of the prior.
The other factor is certainty in a particular center estimation; this is determined byβ, de-
rived from the posterior distribution, and incorporated into the decision stage of the model
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Figure 5: Solomonet al data11 (subject FF), versus Bayesian model.(A) Data and(B) model
biases with same-tilted flankers;(C) Data and(D) model sensitivities with same-tilted flankers;
(E;G) data and(F;H) model as above, but for opposite-tilted flankers (note that opposite-tilted
data was collected for less flanker angles). Each point in the figure is derived by fitting a cum-
mulative Gaussian distributionN(µ, σ) to corresponding psychometric curve, and setting bias
equal toµ and sensitivity to1

σ
. In all experiments, flanker and target gratings are presented in

the visual periphery. Both data and model stimuli are averages of two configurations, on the left
hand side (9 O’clock position) and right hand side (3 O’clock position). The configurations are
similar to Figure 1 (B), but slightly shifted according to an iso-eccentric circle, so that all stimuli
are similarly visible in the periphery.

(equation 3). For flankers that are far from vertical, the prior has minimal effect because
one cannot find a smooth solution (eg, the likelihood dominates), and thus sensitivity is
higher. The low sensitivity at intermediate angles arises because the prior has considerable
effect; and there is conflict between the prior (tilt, position), and likelihood (tilt, position).
This leads to uncertainty in the target angle estimation . For flankers near vertical, the prior
exerts a strong effect; but there is less conflict between the likelihood and prior estimates
(tilt, position) for a vertical target. This leads to more confidence in the posterior estimate,
and therefore, higher sensitivity. The only aspect that our model does not reproduce is the
(more subtle) sensitivity difference between 0 and +/- 5 degree flankers.

Figure 5E-H depict data and model for opposite tilted flankers. The bias is now close to zero
in the data (Figure 5E) and model (Figure 5F), as would be expected (since the maximally
smooth angle is now always roughly vertical). Perhaps more surprisingly, the sensitivities
continue to to be non-flat in the data (Figure 5G) and model (Figure 5H). This behavior
arises in the model due to the strength of prior, and positional uncertainty. As before, there
is most loss in sensitivity at intermediate angles.

Note that to fit Kapadiaet al, simulations used a constant parameter ofk = 9 in equation



3, whereas for the Solomon et al. simulations,k = 2.5. This indicates that, in our model,
there was higher confidence in the foveal experiments than in the peripheral ones.

3 Discussion

We applied a Bayesian framework to the widely studied tilt illusion, and demonstrated the
model on examples from two different data sets involving foveal and peripheral estimation.
Our results support the appealing hypothesis that perceptual misjudgements are not a con-
sequence of poor system design, but rather can be described as optimal inference.4–8 Our
model accounts correctly for both attraction and repulsion, determined by the smoothness
prior and the geometry of the scene.

We emphasized the issue of estimation confidence. The dataset showing how confidence
is affected by the same issues that affect bias,11 was exactly appropriate for a Bayesian
formulation; other models in the literature typically do not incorporate confidence in a
thoroughly probabilistic manner. In fact, our model fits the confidence (and bias) data more
proficiently than an account based on lateral interactions among a population of orientation-
tuned cells.11 Other Bayesian work, by Stockeret al,6 utilized the full slope of the psycho-
metric curve in fitting a prior and likelihood to motion data, but did not examine the issue
of confidence. Estimation confidence plays a central role in Bayesian formulations as a
whole. Understanding how priors affect confidence should have direct bearing on many
other Bayesian calculations such as multimodal integration.23

Our model is obviously over-simplified in a number of ways. First, we described it in terms
of tilts and spatial positions; a more complete version should work in the pixel/filtering do-
main.18,19 We have also only considered two flanking elements; the model is extendible
to a full-field surround, whereby smoothness operates along a range of geometric direc-
tions, and some directions are more (smoothly) dominant than others. Second, the prior
is constructed by summarizing the maximal smoothness information; a more probabilisti-
cally correct version should capture the full probability of smoothness in its prior. Third,
our model does not incorporate a formal noise representation; however, sensitivities could
be influenced both by stimulus-driven noise and confidence. Fourth, our model does not
address attraction in the so-called indirect tilt illusion, thought to be mediated by a different
mechanism. Finally, we have yet to account for neurophysiological data within this frame-
work, and incorporate constraints at the neural implementation level. However, versions
of our computations are oft suggested for intra-areal and feedback cortical circuits; and
smoothness principles form a key part of the association field connection scheme in Li’s24

dynamical model of contour integration in V1.

Our model is connected to a wealth of literature in computer vision and perception. No-
tably, occlusion and contour completion might be seen as the extreme example in which
there is no likelihood information at all for the center target; a host of papers have shown
that under these circumstances, smoothness principles such aselasticaand variants explain
many aspects of perception. The model is also associated with many studies on contour in-
tegration motivated by Gestalt principles;25,26and exploration of natural scene statistics and
Gestalt,27,28 including the relation to contour grouping within a Bayesian framework.29,30

Indeed, our model could be modified to include a prior from natural scenes.

There are various directions for the experimental test and refinement of our model. Most
pressing is to determine bias and sensitivity for different center and flanker contrasts. As
in the case of motion, our model predicts that when there is more uncertainty in the center
element, prior information is more dominant. Another interesting test would be to design
a task such that the center element is actually part of a different figure and unrelated to the
flankers; our framework predicts that there would be minimal bias, because of segmenta-
tion. Our model should also be applied to other tilt-based illusions such as the Fraser spiral



and Z̈ollner. Finally, our model can be applied to other perceptual domains;31 and given
the apparent similarities between the tilt illusion and the tilt after-effect, we plan to extend
the model to adaptation, by considering smoothness in time as well as space.
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