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Abstract

Theories of visual attention commonly posit that early parallel processes extract con-
spicuous features such as color contrast and motion from the visual field. These features
are then combined into a saliency map, and attention is directed to the most salient
regions first. Top-down attentional control is achieved by modulating the contribution of
different feature types to the saliency map. A key source of data concerning attentional
control comes from behavioral studies in which the effect of recent experience is exam-
ined as individuals repeatedly perform a perceptual discrimination task (e.g., “what
shape is the odd-colored object?”). The robust finding is that repetition of features of
recent trials (e.g., target color) facilitates performance. We view this facilitation as an
adaptation to the statistical structure of the environment. We propose a probabilistic
model of the environment that is updated after each trial. Under the assumption that
attentional control operates so as to make performance more efficient for more likely
environmental states, we obtain parsimonious explanations for data from four different
experiments. Further, our model provides a rational explanation for why the influence of
past experience on attentional control is short lived.

1 INTRODUCTION

The brain does not have the computational capacity to fully process the massive quantity
of information provided by the eyes. Selective attention operates to filter the spatiotempo-
ral stream to a manageable quantity. Key to understanding the nature of attention is dis-
covering the algorithm governing selection, i.e., understanding what information will be
selected and what will be suppressed. Selection is influenced by attributes of the spa-
tiotemporal stream, often referred to as bottom-up contributions to attention. For example,
attention is drawn to abrupt onsets, motion, and regions of high contrast in brightness and
color. Most theories of attention posit that some visual information processing is per-
formed preattentively and in parallel across the visual field. This processing extracts prim-
itive visual features such as color and motion, which provide the bottom-up cues for
attentional guidance. However, attention is not driven willy nilly by these cues. The
deployment of attention can be modulated by task instructions, current goals, and domain
knowledge, collectively referred to as fop-down contributions to attention.

How do bottom-up and top-down contributions to attention interact? Most psychologi-
cally and neurobiologically motivated models propose a very similar architecture in which
information from bottom-up and top-down sources combines in a saliency (or activation)
map (e.g., Itti et al., 1998; Koch & Ullman, 1985; Mozer, 1991; Wolfe, 1994). The
saliency map indicates, for each location in the visual field, the relative importance of that
location. Attention is drawn to the most salient locations first.

Figure 1 sketches the basic architecture that incorporates bottom-up and top-down contri-
butions to the saliency map. The visual image is analyzed to extract maps of primitive fea-
tures such as color and orientation. Associated with each location in a map is a scalar
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response or activation indicating the presence of a particular feature. Most models assume
that responses are stronger at locations with high local feature contrast, consistent with
neurophysiological data, e.g., the response of a red feature detector to a red object is stron-
ger if the object is surrounded by green objects. The saliency map is obtained by taking a
sum of bottom-up activations from the feature maps. The bottom-up activations are modu-
lated by a top-down gain that specifies the contribution of a particular map to saliency in
the current task and environment. Wolfe (1994) describes a heuristic algorithm for deter-
mining appropriate gains in a visual search task, where the goal is to detect a target object
among distractor objects. Wolfe proposes that maps encoding features that discriminate
between target and distractors have higher gains, and to be consistent with the data, he
proposes limits on the magnitude of gain modulation and the number of gains that can be
modulated. More recently, Wolfe et al. (2003) have been explicit in proposing optimiza-
tion as a principle for setting gains given the task definition and stimulus environment.

One aspect of optimizing attentional control involves configuring the attentional system to
perform a given task; for example, in a visual search task for a red vertical target among
green vertical and red horizontal distractors, the task definition should result in a higher
gain for red and vertical feature maps than for other feature maps. However, there is a
more subtle form of gain modulation, which depends on the statistics of display environ-
ments. For example, if green vertical distractors predominate, then red is a better discrim-
inative cue than vertical; and if red horizontal distractors predominate, then vertical is a
better discriminative cue than red.

In this paper, we propose a model that encodes statistics of the environment in order to
allow for optimization of attentional control to the structure of the environment. Our
model is designed to address a key set of behavioral data, which we describe next.

1.1 Attentional priming phenomena

Psychological studies involve a sequence of experimental ¢rials that begin with a stimulus
presentation and end with a response from the human participant. Typically, trial order is
randomized, and the context preceding a trial is ignored. However, in sequential studies,
performance is examined on one trial contingent on the past history of trials. These
sequential studies explore how experience influences future performance. Consider a the
sequential attentional task of Maljkovic and Nakayama (1994). On each trial, the stimulus
display (Figure 2) consists of three notched diamonds, one a singleton in color—either
green among red or red among green. The task is to report whether the singleton diamond,
referred to as the target, is notched on the left or the right. The task is easy because the sin-
gleton pops out, i.e., the time to locate the singleton does not depend on the number of dia-
monds in the display. Nonetheless, the response time significantly depends on the
sequence of trials leading up to the current trial: If the target is the same color on the cur-



rent trial as on the previous trial, response time is roughly 100 ms faster than if the target is
a different color on the current trial. Considering that response times are on the order of
700 ms, this effect, which we term attentional priming, is gigantic in the scheme of psy-
chological phenomena.

2 ATTENTIONAL CONTROL AS ADAPTATION TO THE
STATISTICS OF THE ENVIRONMENT

We interpret the phenomenon of attentional priming via a particular perspective on atten-
tional control, which can be summarized in two bullets.

e The perceptual system dynamically constructs a probabilistic model of the environ-
ment based on its past experience.

e Control parameters of the attentional system are tuned so as to optimize performance
under the current environmental model.

The primary focus of this paper is the environmental model, but we first discuss the nature
of performance optimization.

The role of attention is to make processing of some stimuli more efficient, and conse-
quently, the processing of other stimuli less efficient. For example, if the gain on the red
feature map is turned up, processing will be efficient for red items, but competition from
red items will reduce the efficiency for green items. Thus, optimal control should tune the
system for the most likely states of the world by minimizing an objective function such as:

J(g) = Y P(e)RT,(e) (1

where g is a vector of top-down gains, e is an index over environmental states, P(.) is the
probability of an environmental state, and RT(.) is the expected response time—assuming
a constant error rate—to the environmental state under gains g. Determining the optimal
gains is a challenge because every gain setting will result in facilitation of responses to
some environmental states but hindrance of responses to other states.

The optimal control problem could be solved via direct reinforcement learning, but the
rapidity of human learning makes this possibility unlikely: In a variety of experimental
tasks, evidence suggests that adaptation to a new task or environment can occur in just one
or two trials (e.g., Rogers & Monsell, 1996). Model-based reinforcement learning is an
attractive alternative, because given a model, optimization can occur without further expe-
rience in the real world. Although the number of real-world trials necessary to achieve a
given level of performance is comparable for direct and model-based reinforcement learn-
ing in stationary environments (Kearns & Singh, 1999), naturalistic environments can be
viewed as highly nonstationary. In such a situation, the framework we suggest is well
motivated: After each experience, the environment model is updated. The updated envi-
ronmental model is then used to retune the attentional system.

In this paper, we propose a particular model of the environment suitable for visual search
tasks. Rather than explicitly modeling the optimization of attentional control by setting
gains, we assume that the optimization process will serve to minimize Equation 1.
Because any gain adjustment will facilitate performance in some environmental states and
hinder performance in others, an optimized control system should obtain faster reaction
times for more probable environmental states. This assumption allows us to explain exper-
imental results in a minimal, parsimonious framework.

3 MODELING THE ENVIRONMENT

Focusing on the domain of visual search, we characterize the environment in terms of a



probability distribution over configurations of target and distractor features. We distin-
guish three classes of features: defining, reported, and irrelevant. To explain these terms,
consider the task of searching a display of size varying, colored, notched diamonds (Fig-
ure 2), with the task of detecting the singleton in color and judging the notch location.
Color is the defining feature, notch location is the reported feature, and size is an irrele-
vant feature. To simplify the exposition, we treat all features as having discrete values, an
assumption which is true of the experimental tasks we model. We begin by considering
displays containing a single target and a single distractor, and shortly generalize to multid-
istractor displays.

We use the framework of Bayesian networks to characterize the environment. Each fea-
ture of the target and distractor is a discrete random variable, e.g., T, for target color
and D, .y, for the location of the notch on the distractor. The Bayes net encodes the prob-
ability distribution over environmental states; in our working example, this distribution is

P(Tcolor’ Tsize’ Tnotch’ Dcolor’ Dsize’ Dnotch)'

The structure of the Bayes net specifies the relationships among the features. The simplest
model one could consider would be to treat the features as independent, illustrated in Fig-
ure 3a for singleton-color search task. The opposite extreme would be the full joint distri-
bution, which could be represented by a look up table indexed by the six features, or by
the cascading Bayes net architecture in Figure 3b. The architecture we propose, which
we’ll refer to as the dominance model (Figure 3c), has an intermediate dependency struc-
ture, and expresses the joint distribution as:

P(Tcolor) P(D colorl Tcolor) P(Tsize | Tcolor) P(Tnotch | Tcolor) P(Dsize | D color) P(D notch | Tcolor) .
The structured model is constructed based on three rules.
1. The defining feature of the target is at the root of the tree.

2. The defining feature of the distractor is conditionally dependent on the defining fea-
ture of the target. We refer to this rule as dominance of the target over the distractor.

3. The reported and irrelevant features of target (distractor) are conditionally dependent
on the defining feature of the target (distractor). We refer to this rule as dominance of
the defining feature over nondefining features.

As we will demonstrate, the dominance model produces a parsimonious account of a wide
range of experimental data.
3.1 Updating the environment model

The model’s parameters are the conditional distributions embodied in the links. In the
example of Figure 3¢ with binary random variables, the model has 11 parameters. How-
ever, these parameters are determined by the environment: To be adaptive in nonstationary
environments, the model must be updated following each experienced state. We propose a
simple exponentially weighted averaging approach. For two variables V and W with
observed values v and w on trial 7, a conditional distribution, P(V = u|W =w) = §,,,1s
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FIGURE 3. Three models of a visual-search environment with colored, notched, size-varying diamonds. (a)
feature-independence model; (b) full-joint model; (c) dominance model.

uv’?




defined, where & is the necker delta. The distribution representing the environment
following trial ¢, denoted P, , is then updated as follows:

PE(V=uW=w) = aP, (V=uW=w)+(1-a)P(V=uW=w) (2

for all u, where o is a memory constant. Note that no update is performed for values of W
other than w. An analogous update is performed for unconditional distributions.

How the model is initialized—i.e., specifying Pg —is irrelevant, because all experimental
tasks that we model, participants begin the experiment with many dozens of practice tEals.
Data is not collected during practice trials. Consequently, any transient effects of P, do
not impact the results. In our simulations, we begin with a uniform distribution for P,
and include practice trials as in the human studies.

Thus far, we’ve assumed a single target and a single distractor. The experiments that we
model involve multiple distractors. The simple extension we require to handle multiple
distractors is to define a frequentist probability for each distractor feature V,
P(V=v|W=w)=C,  /C, , where C  isthe count of co-occurrences of feature val-
ues v and w among the distractors, and C,, is the count of w.

Our model is extremely simple. Given a description of the visual search task and environ-
ment, the model has only a single degree of freedom, o . In all simulations, we fix
o = 0.75; however, the choice of o does not qualitatively impact any result.

4 SIMULATIONS

In this section, we show that the model can explain a range of data from four different
experiments examining attentional priming. All experiments measure response times of
participants. On each trial, the model can be used to obtain a probability of the display
configuration (the environmental state) on that trial, given the history of trials to that
point. Our critical assumption—as motivated earlier—is that response times monotoni-
cally decrease with increasing probability, indicating that visual information processing is
better configured for more likely environmental states. The particular relationship we
assume is that response times are linear in log probability. This assumption yields long
response time tails, as are observed in all human studies.

4.1 Maljkovic and Nakayama (1994, Experiment 5)

In this experiment, participants were asked to search for a singleton in color in a display of
three red or green diamonds. Each diamond was notched on either the left or right side,
and the task was to report the side of the notch on the color singleton. The well-practiced
participants made very few errors. Reaction time (RT) was examined as a function of
whether the target on a given trial is the same or different color as the target on trial  steps
back or ahead. Figure 4 shows the results, with the human RTs in the left panel and the
simulation log probabilities in the right panel. The horizontal axis represents n. Both
graphs show the same outcome: repetition of target color facilitates performance. This
influence lasts only for a half dozen trials, with an exponentially decreasing influence fur-
ther into the past. In the model, this decreasing influence is due to the exponential decay of
recent history (Equation 2). Figure 4 also shows that—as expected—the future has no
influence on the current trial.

4.2 Maljkovic and Nakayama (1994, Experiment 8)

In the previous experiment, it is impossible to determine whether facilitation is due to rep-
etition of the target’s color or the distractor’s color, because the display contains only two
colors, and therefore repetition of target color implies repetition of distractor color. To
unconfound these two potential factors, an experiment like the previous one was con-



ducted using four distinct colors, allowing one to examine the effect of repeating the target
color while varying the distractor color, and vice versa. The sequence of trials was com-
posed of subsequences of up-to-six consecutive trials with either the target or distractor
color held constant while the other color was varied trial to trial. Following each subse-
quence, both target and distractors were changed. Figure 5 shows that for both humans and
the simulation, performance improves toward an asymptote as the number of target and
distractor repetitions increases; in the model, the asymptote is due to the probability of the
repeated color in the environment model approaching 1.0. The performance improvement
is greater for target than distractor repetition; in the model, this difference is due to the
dominance of the defining feature of the target over the defining feature of the distractor.

4.3 Huang, Holcombe, and Pashler (2004, Experiment 1)

Huang et al. (2004) and Hillstrom (2000) conducted studies to determine whether repeti-
tions of one feature facilitate performance independently of repetitions of another feature.
In the Huang et al. study, participants searched for a singleton in size in a display consist-
ing of lines that were short and long, slanted left or right, and colored white or black. The
reported feature was target slant. Slant, size, and color were uncorrelated. Huang et al. dis-
covered that repeating an irrelevant feature (color or orientation) facilitated performance,
but only when the defining feature (size) was repeated. As shown in Figure 6, the model
replicates human performance, due to the dominance of the defining feature over the
reported and irrelevant features.

4.4 Wolfe, Butcher, Lee, and Hyde (2003, Experiment 1)

In an empirical tour-de-force, Wolfe et al. (2003) explored singleton search over a range of
environments. The task is to detect the presence or absence of a singleton in displays con-
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sisting of colored (red or green), oriented (horizontal or vertical) lines. Target-absent trials
were used primarily to ensure participants were searching the display. The experiment
examined seven experimental conditions, which varied in the amount of uncertainty as to
the target identity. The essential conditions, from least to most uncertainty, are: blocked
(e.g., target always red vertical among green horizontals), mixed feature (e.g., target
always a color singleton), mixed dimension (e.g., target either red or vertical), and fully
mixed (target could be red, green, vertical, or horizontal). With this design, one can ascer-
tain how uncertainty in the environment and in the target definition influence task diffi-
culty. Because the defining feature in this experiment could be either color or orientation,
we modeled the environment with two Bayes nets—one color dominant and one orienta-
tion dominant—and performed model averaging. A comparison of Figures 7a and 7b
show a correspondence between human RTs and model predictions. Less uncertainty in
the environment leads to more efficient performance. One interesting result from the
model is its prediction that the mixed-feature condition is easier than the fully-mixed con-
dition; that is, search is more efficient when the dimension (i.e., color vs. orientation) of
the singleton is known, even though the model has no abstract representation of feature
dimensions, only feature values.

4.5 Optimal adaptation constant

In all simulations so far, we fixed the memory constant. From the human data, it is clear
that memory for recent experience is relatively short lived, on the order of a half dozen tri-
als (e.g., left panel of Figure 4). In this section we provide a rational argument for the short
duration of memory in attentional control.

Figure 7c shows mean negative log probability in each condition of the Wolfe et al. (2003)
experiment, as a function of o . To assess these probabilities, for each experimental condi-
tion, the model was initialized so that all of the conditional distributions were uniform,
and then a block of trials was run. Log probability for all trials in the block was averaged.
The negative log probability (y axis of the Figure) is a measure of the model’s mispredic-
tion of the next trial in the sequence.

For complex environments, such as the fully-mixed condition, a small memory constant is
detrimental: With rapid memory decay, the effective history of trials is a high-variance
sample of the distribution of environmental states. For simple environments, a large mem-
ory constant is detrimental: With slow memory decay, the model does not transition
quickly from the initial environmental model to one that reflects the statistics of a new
environment. Thus, the memory constant is constrained by being large enough that the
environment model can hold on to sufficient history to represent complex environments,
and by being small enough that the model adapts quickly to novel environments. If the
conditions in Wolfe et al. give some indication of the range of naturalistic environments an
agent encounters, we have a rational account of why attentional priming is so short lived.
Whether priming lasts 2 trials or 20, the surprising empirical result is that it does not last
200 or 2000 trials. Our rational argument provides a rough insight into this finding.
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S DISCUSSION

The psychological literature contains two opposing accounts of attentional priming and its
relation to attentional control. Huang et al. (2004) and Hillstrom (2000) propose an epi-
sodic account in which a distinct memory trace—representing the complete configuration
of features in the display—is laid down for each trial, and priming depends on configural
similarity of the current trial to previous trials. Alternatively, Maljkovic and Nakayama
(1994) and Wolfe et al. (2003) propose a feature-strengthening account in which detection
of a feature on one trial increases its ability to attract attention on subsequent trials, and
priming is proportional to the number of overlapping features from one trial to the next.
The episodic account corresponds roughly to the full joint model (Figure 3b), and the fea-
ture-strengthening account corresponds roughly to the independence model (Figure 3a).
Neither account is adequate to explain the range of data we presented. However, an inter-
mediate account, the dominance model (Figure 3c), is not only sufficient, but it offers a
parsimonious, rational explanation. Beyond the model’s basic assumptions, it has only one
free parameter, and can explain results from diverse experimental paradigms.

The model makes a further theoretical contribution. Wolfe et al. distinguish the environ-
ments in their experiment in terms of the amount of top-down control available, implying
that different mechanisms might be operating in different environments. However, in our
account, top-down control is not some substance distributed in different amounts depend-
ing on the nature of the environment. Our account treats all environments uniformly, rely-
ing on attentional control to adapt to the environment at hand.

We conclude with two limitations of the present work. First, our account presumes a par-
ticular network architecture, instead of a more elegant Bayesian approach that specifies
priors over architectures, and performs automatic model selection via the sequence of tri-
als. We did explore such a Bayesian approach, but it was unable to explain the data. Sec-
ond, at least one finding in the literature is problematic for the model. Hillstrom (2000)
occasionally finds that RTs slow when an irrelevant target feature is repeated but the defin-
ing target feature is not. However, because this effect is observed only in some experi-
ments, it is likely that any model would require elaboration to explain the variability.
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