Data-Driven Online to Batch Conversions

Ofer Dekel and Yoram Singer
School of Computer Science and Engineering
The Hebrew University, Jerusalem 91904, Israel
{of erd, singer }@s. huji.ac.il

Abstract

Online learning algorithms are typically fast, memory efficient, and sim-
ple to implement. However, many common learning problems fit more
naturally in the batch learning setting. The power of online learning
algorithms can be exploited in batch settings by usingine-to-batch
conversions techniques which build a new batch algorithm from an ex-
isting online algorithm. We first give a unified overview of three exist-
ing online-to-batch conversion techniques which do not use training data
in the conversion process. We then build upon theesa-independent
conversions to derive and analydata-drivenconversions. Our conver-
sions find hypotheses with a small risk by explicitly minimizing data-
dependent generalization bounds. We experimentally demonstrate the
usefulness of our approach and in particular show that the data-driven
conversions consistently outperform the data-independent conversions.

1 Introduction

Batch learningis probably the most common supervised machine-learning setting. In the
batch setting, instances are drawn from a dormddiand are associated with target values
from a target se)). The learning algorithm is given a training set of examples, where each
example is an instance-target pair, and attempts to identify an underlying rule that can be
used to predict the target values of new unseen examples. In other words, we would like
the algorithm togeneralizefrom the training set to the entire domain of examples. The
target spac@’ can be either discrete, as in the case of classification, or continuous, as in
the case of regression. Concretely, the learning algorithm is confined to a predetermined
set of candidatéypothesegt, where each hypothesis € H is a mapping fromX’ to

Y, and the algorithm must select a “good” hypothesis frain The quality of different
hypotheses ift{ is evaluated with respect to a loss functigmvherel(y, y') is interpreted

as the penalty for predicting the target valewhen the correct target ig. Therefore,

£(y, h(x)) indicates how well hypothesis performs with respect to the exampbe, y).
When) is a discrete set, we often use the 0-1 loss, definet{fyy’) = 1,-,,. We also
assume that there exists a probability distributirover the product spac& x), and

that the training set was sampled i.i.d. from this distribution. Moreover, the existefize of
enables us to reason about the average performance of an hypothesis over its entire domain.
Formally, therisk of an hypothesi# is defined to be,

Riskp(h) = Exy)~p [€(y, h(x))] - 1)

The goal of a batch learning algorithm is to use the trainingsénd a hypothesis that
does well on average, or more formally, to find= H with a small risk.

In contrast to the batch learning settiogline learningakes place in a sequence of rounds.

On any given round, the learning algorithm receives a single instarce X and predicts

its target value using an hypothesis 1, which was generated on the previous round. On
the first round, the algorithm uses a default hypothksismmediately after the prediction

is made, the correct target valygis revealed and the algorithm suffers an instantaneous
loss of¢(y;, hi—1(x¢)). Finally, the online algorithm may use the newly obtained example
(x¢, y:) to improve its prediction strategy, namely to replage; with a new hypothesis

h;. Alternatively, the algorithm may choose to stick with its current hypothesis and sets
ht = h.—1. An online algorithm is therefore defined by its default hypothégiand the
update rule it uses to define new hypotheses. dlmulative lossuffered on a sequence

of rounds is the sum of instantaneous losses suffered on each one of the rounds in the
sequence. In the online setting there is typically no need for any statistical assumptions
since there is no notion of generalization. The goal of the online algorithm is simply to
suffer a small cumulative loss on the sequence of examples it is given, and examples that
are not in this sequence are entirely irrelevant.

Throughout this paper, we assume that we have access to a good online learning algorithm
A for the task on hand. Moreoved is computationally efficient and easy to implement.
However, the learning problem we face fits much more naturally within the batch learning
setting. We would like to develop a batch algoritifhthat exhibits the desirable charac-
teristics of. A but also has good generalization properties. A simple and powerful way to
achieve this is to use amline-to-batch conversiotechnique. This is a general name for

any technique which use4 as a building block in the construction 8f Several differ-

ent online-to-batch conversion techniques have been developed over the years. Littlestone
and Warmuth [11] introduced an explicit relation between compression and learnability,
which immediately lent itself to a conversion technique for classification algorithms. Gal-
lant [7] presented thBPocket algorithma conversion of Rosenblatt’s onliferceptronto

the batch setting. Littlestone [10] presented @ress-Validationconversion which was
further developed by Cesa-Bianchi, Conconi and Gentile [2]. All of these techniques begin
by presenting the training séti, 1), - . ., (Xm, ¥m) t0o A in some arbitrary order. Asl
performs then online rounds, it generates a sequence of online hypotheses which it uses to
make predictions on each round. This sequence includes the default hypathasdthe

m hypotheses, ..., h,, generated by the update rule. The aforementioned techniques all
share a common property: they all choas¢he output of the batch algorithf) to be one

of the online hypotheséds,, . .., h,.

In this paper, we focus on a second family of conversions, which evolved somewhat later
and is due to the work of Helmbold and Warmuth [8], Freund and Schapire [6] and Cesa-
Bianchi, Conconi and Gentile [2]. The conversion strategies in this family also begin by
using.A to generate the sequence of online hypotheses. However, instead of relying on
a single hypothesis from the sequence, theyhstt be some combination of the entire
sequence. Another characteristic shared by these three conversions is that the training data
does not play a part in determining how the online hypotheses are combined. That is, the
training data is not used in any way other than to generate the seqglignce, h,,,. In

this sense, these conversion techniqueslata-independentn this paper, we build on the
foundations of these data-independent conversions, and define conversion techniques that
explicitly use the training data to derive the batch algorithm from the online algorithm. By
doing so, we effectively define thdata-drivencounterparts of the algorithmsin [8, 6, 2].

This paper is organized as follows. In Sec. 2 we review the data-independent conversion
techniques from [8, 6, 2] and give a simple unified analysis for all three conversions. At the
same time, we present a general framework which serves as a building-block for our data-
driven conversions. Then, in Sec. 3, we derive three special cases of the general framework

and demonstrate some useful properties of the data-drivarecsions. Finally, in Sec. 4,
we compare the different conversion techniques on several benchmark datasets and show
that our data-driven approach outperforms the existing data-independent approach.

2 \oting, Averaging, and Sampling

The first conversion we discuss is tleting conversion [6], which applies to problems
where the target spageis discrete (and relatively small), such as classification problems.
The conversion presents the training get, 1), - - . , (Xm, ¥) to the online algorithrmA,

which generates the sequence of online hypothéses, ., h,,,. The conversion then out-

puts the hypothesis", which is defined as follows: given an inpxite X, each online
hypothesis casts a vote bf(x) and them:" outputs the target value that receives the high-
est number of votes. For simplicity, assume that ties are broken arbitrarily. The second
conversion is thaveragingconversion [2] which applies to problems whérés a convex

set. For example, this conversion is applicable to margin-based online classifiers or to re-
gression problems where, in both casgss R. This conversion also begins by usidgo
generatéy, . . ., h,,. Then the batch hypothesi$ is defined to beml—+1 Z;’;O hi(x). The

third and last conversion discussed here issdu@plingconversion [8]. This conversion is

the most general and applicable to any learning problem, however this generality comes at
a price. The resulting hypothesis;, is a stochastic function and not a deterministic one.

In other words, if applied twice to the same instaricemay output different target values.
Again, this conversion begins by applyingto the training set and obtaining the sequence

of online hypotheses. Every tink€ is evaluated, it randomly selects onégf . . ., h,,, and

uses it to make the prediction. Sinkeis a stochastic function, the definitionBfskp (h5)
changes slightly and expectation in Eq. (1) is taken also over the random fuhgtion

Simple data-dependent bounds on the riskhbf h* and hS can be derived, and these
bounds are special cases of the more general analysis given below. We now describe a
simple generalization of these three conversion techniques. It is reasonable to assume that
some of the online hypotheses generated4ogre better than others. For instance, the
default hypothesi is determined without observing even a single training example. This
surfaces the question whether it is possible to isolate the “best” online hypotheses and only
use them to define the batch hypothesis. Formallyétdenote the sefo,...,m} and

let I be some non-empty subset pfi]. Now defineh}(x) to be the hypothesis which
performs voting as described above, with the single difference that only the members of
{hi : i € I} participate in the vote. Similarly, defirg (x) = (1/[1]) >_,; hi(x), and let

h3 be the stochastic function that randomly chooses a function from thgiseti € I'}

every time it is evaluated, and predicts according to it. The data-independent conversions
presented in the beginning of this section are obtained by sdttiagm]. Our idea is to

use the training data to find a Setvhich induces the batch hypothedgs 1%, andh$ with

the smallest risk.

Since there is an exponential number of potential subseftsjofwe need to restrict our-
selves to a smaller set of candidate sets. Formally, le¢ a family of subsets dfn], and

we restrict our search fdrto the familyZ. Following in the footsteps of [2], we make the
simplifying assumption that none of the setsZirinclude the largest index. This is a
technical assumption which can be relaxed at the price of a slightly less elegant analysis.
We use two intuitive concepts to guide our searchfofirst, for any set/ C [m — 1],
defineL(J) = (1/[J]) >_ e £(yj+1, hj(xj41)). L(J) is the empirical evaluation of the

loss of the hypotheses indexed lyWe would like to find a sef for which L(.J) is small

since we expect that good empirical loss of the online hypotheses indicates a low risk of
the batch hypothesis. Second, we would ljéto be large so that the presence of a few
bad online hypotheses i will not have a devastating effect on the performance of the
batch hypothesis. The trade-off between these two competing concepts can be formalized

as follows. LetC' be a non-negative constant and define,
B(J) = LUJ)+C |72 . 2)

The functiong decreases as the average empirical Ibg%) decreases, and also pH
increases. It therefore captures the intuition described above. The fupgctemes as our
yardstick when evaluating the candidateZ irSpecifically, we sef = argmin ez 5(J).
Below we formally justify our choice aof, and specifically show thgit(.J) is a rather tight
upper bound on the risk @f}, Y andhS,. The firstlemma relates the risk of these functions
with the average risk of the hypotheses indexed’by

Lemma 1. Let(x1,u1), .- -, (Xm, ym) be a sequence of examples which is presented to the
online algorithmA and lethy, . . ., h,, be the resulting sequence of online hypotheses. Let
J be a non-empty subsetfofi — 1] and let/ :) x) — R be a loss function(1) If ¢ is

the 0-1 loss theRiskp (hY) < (2/]J]) >_,c; Riskp (hi(x)). (2) If £is convex in its second
argument therRiskp (7) < (1/[J]) >_,c; Riskp(hi(x)). (3) For any loss functiort it
holds thatRiskp (h5) = (1/].J]) 3, s Riskp (hi(x)).

Proof. Beginning with the voting conversion, recall that the loss function being used is the
0-1 loss, namely there is a single correct prediction which incurs a Idsard every other
prediction incurs a loss df. For any exampléx, y), if more than half of the hypotheses

in {h;};c; predict the correct outcome then cleatlyj also predicts this outcome and
l(y,hY(x)) = 0. Therefore, if¢(y, hY,(x)) = 1 then at least half of the hypotheses in
{hi}ics make incorrect predictions arifl/|/2) < >, ; £(y, hi(x)). We therefore get,

2
Uy, B3 (x) < == Uy, hi(x)) .
%
The above holds for any example, y) and therefore also holds after taking expectations

on both sides of the inequality. The bound now follows from the linearity of expectation
and the definition of the risk function in Eq. (1).

Moving on to the second claim of the lemma, we assume ghisitconvex in its second
argument. The claim now follows from a direct application of Jensen’s inequality.

Finally, 5 chooses its outcome by randomly choosing an hypothesf&in i € J},
where the probability of choosing each hypothesis in this set equAI$|). Therefore, the
expected loss suffered i3y, on an exampléx, y) is (1/]J]) >, ; £(y, hi(x)). The risk of
hS is simply the expected value of this term with respect to the random selectian:pt
Again using the linearity of expectation, we obtain the third claim of the lemma. O

The next lemma relates the average risk of the hypothesesddddy ./ with the empirical
performance of these hypothesé&s,J). In the following lemma, we use capital letters to
emphasize that we are dealing with random variables.

Lemma 2. Let (X1,Y7),...,(Xm,Y.,) be a sequence of examples independently sam-
pled according taD. Let, Hy, ..., H,, be the sequence of online hypotheses generated by
A while observing this sequence of examples. Assume that the loss fuhidiapper-
bounded byk. Then for any/ C [m — 1],

1 C?
Pr| — i . _
r 7] ;ngkD(Hl) > ﬁ(‘])] < exp(2R2>)
where(C is the constant used in the definition®tEq. (2)).

The proof of this lemma is a direct application of Azuma’s bound on the concentration of
Lipschitz martingales [1], and is identical to that of Proposition 1 in [2]. For concreteness,

we now focus on the averaging conversion and note that thgsesabf the other two
conversion strategies are virtually identical. By combining the first claim of Lemma 1 with
Lemma 2, we get that for any € Z it holds thatRiskp (k%) < §(J) with probability at
leastl — exp (—C?/(2R?)). Using the union boundRiskp (1) < 8(J) forall J € T
simultaneously with probability at least,

02

The greater the value @, the mores is influenced by the ter/|. On the other hand,
a large value o€’ increases the probability thatindeed upper boundsiskp (/) for all
J € Z. In conclusion, we have theoretically justified our choicgaf Eq. (2).

3 Concrete Data-Driven Conversions

In this section we build on the ideas of the previous section and derive three concrete data-
driven conversion techniques.

Suffix Conversion: An intuitive argument against selectifig= [m], as done by the data-
independent conversions, is that many online algorithms tend to generate bad hypotheses
during the first few rounds of learning. As previously noted, the default hypothgsss
determined without observing any training data, and we should expect the first few online
hypotheses to be inferior to those that are generated further along. This argument motivates
us to consider subsetsof the form{a,a + 1,...,m — 1}, wherea is a positive integer

less than or equal taw — 1. Li [9] proposed this idea in the context of the voting conversion

and gave a heuristic criterion for choosiagOur formal setting gives a different criterion

for choosingu. In this conversion we defingto be the set of all suffixes ¢fn — 1]. After

the algorithm generatés, . . . , h,,,, we setl to bel = argmin jez 5(J).

Interval Conversion: Kernel-based hypotheses are functions that take the fofx),=

2?21 o K(zj,x), whereK is a Mercer kernelz,, ..., z, are instances, often referred

to assupport patternandag, . . ., o, are real weights. A variety of different batch algo-
rithms produce kernel-based hypotheses, including the Support Vector Machine [12]. An
important learning problem, which is currently addressed by only a handful of algorithms,
is to learn a kernel-based hypothésishich is defined by at mod® support patterns. The
parameterB is a predefined constant often referred to ashthégetof support patterns.
Naturally, kernel-based hypotheses which are represented by a few support patterns are
memory efficient and faster to calculate. A similar problem arises in the online learning
setting where the goal is to construct online algorithms where each online hypdthissis

a kernel-based function defined by at mBstectors. Several online algorithms have been
proposed for this problem [4, 13, 5]. First note that the data-independent conversions, with
I = [m)], are inadequate for this setting. Although each individual online hypothesis is
defined by at mosB vectors,h” is defined by the union of these sets, which can be much
larger thanB.

To convert a budget-constrained online algorithirinto a budget-constrained batch al-
gorithm, we make an additional assumption on the update strategy employéd Wie

assume that wheneverupdates its online hypothesis, it adds a single new support pattern
into the set used to represent the kernel hypothesis, and possibly removes some other pat-
tern from this set. The algorithms in [4, 13, 5] all fall into this category. Therefore, if we
choosel to be the sefa,a + 1,...,b} for some integer8 < a < b < m, and.A updates

its hypothesig: times during rounds + 1 throughb, thenh?} is defined by at mosB + &

support patterns. Concretely, defifieo be the set of all non-empty intervals|im — 1].

With C' set properlyj3(.J) boundsRiskp (h%) for everyJ € 7 with high probability. Next,

Joy7

Jo,s Ja,7 Js,11

Jo,1 J2,3 Ja,s Je,7 Jg,9 J10,11

—_—N —~— —— = = ——
hO hl h2 h3 h4 h5 h6 h7 hS h9 th hll h12

Figure 1: An illustration of the tree-based conversion.

generatéy, . . ., h,, by running.A with a budget parameter @ /2. Finally, choosd to
be the set irf which contains at mogB/2 updates and also minimizes thidunction. By
construction, the resulting hypothesig, is defined using at mos® support patterns.

Tree-Based Conversion: A drawback of the suffix conversions is that it must be per-
formed in two consecutive stages. Fitst, ..., h,, are generated and stored in memory.
Only then can we calculaté(J) for everyJ € Z and perform the conversion. Therefore,
the memory requirements of this conversions grow linearly with We now present a
conversion that can sidestep this problem by interleaving the conversion with the online
hypothesis generation. This conversion slightly deviates from the general framework de-
scribed in the previous section: instead of predefining a set of candifiaes construct

the optimal subset in a recursive manner. As a consequence, the analysis in the previous
section does not directly provide a generalization bound for this conversion. Assume for a
moment thatn is a power of2. For all0 < a < m — 1 defineJ, , = {a}. Now, assume

that we have already constructed the skts and.J. 4, wherea, b, c, d are integers such
thata < d, b= (a +d—1)/2,andc = b+ 1. Given these sets, defing 4 as follows:

Ja,b if B(Ja,b) S B(Jc,d) A ﬂ(Ja,b) S ﬂ(Ja,b U Jc,d)
Ja,d = { Jc,d if B(Jc,d) < ﬁ(Ja,b) A ﬁ(Jc,d) < 5(Ja,b U Jc,d) . (3)
JapUJeq oOtherwise

Finally, definel = Jy,,,—1 and output the batch hypothedi$. An illustration of this
process is given in Fig. 1. Note that the definitionlofequires onlym — 1 recursive
evaluations of Eq. (3). Whem is not a power o2, we can pad the sequence of online
hypotheses with virtual hypotheses, each of which attains an infinite loss. This conversion
can be performed in parallel with the online rounds since on reuvelalready have all of

the information required to calculatg ; for all b < ¢.

In the special case where the instances are vect®8,in, . . ., h,, are linear hypotheses

and we use the averaging technique, the implementation of the tree-based conversion be-
comes memory efficient. Specifically, assume that dadhkes the formh;(x) = w; - x
wherew; is a vector of weights ilR™. In this case, storing an online hypotheaisis
equivalent to storing its weight vecter;. For anyJ C [m — 1], storingzjeJ h; requires

storing the single:-dimensional vectoEjeJ w;. Hence, once we calculatg ;, we can
discard the original online hypothedes . . ., h; and instead merely keég, . Moreover,

in order to calculatg we do not need to keep the sgt; itself but rather the values(J, 1)
and|.J, |. Overall, storinghf}a W L(J,), and|J, 5| requires only a constant amount of
memory. It can be verified using an inductive argument that the overall memory utilization
of this conversion i®)(log(m)), which is significantly less than th@(m) space required

by the suffix conversion.

4 Experiments

We now turn to an empirical evaluation of the averaging and voting conversions. We
chose multiclass classification as the underlying task and used the multiclass version of

3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

o |1 h [L lm . 1.
T HEF HF FT T ¥9FTEFTETIT

T

|| R | | [T [T | U

[[[[[[[[

ISOLET USPS MNIST LETTER

- I

i LIJLJLI_I PO L;JLIJLIJ FTH [E® |_I_|LI_|'-I—' quLIJ
S I T S | T S | T S | T S | T S | T S | T S | T

Figure 2: Comparison of the three data-driven averaging esions with the data-
independent averaging conversion, for different datasets (Y-axis) and different training-set
sizes (X-axis). Each bar shows the difference between the error percentages of a data-
driven conversionquffix (S), interval (I) or tree-basedT)) and of the data-independent

conversion. Error bars show standard deviation ovektfodds.

the Passive-AggressiV@A) algorithm [3] as the online algorithm. The PA algorithm is a
kernel-based large-margin online classifier. To apply the voting convegishould be a
finite set. Indeed, in multiclass categorization problems th&satnsists of all possible
labels. To apply the averaging conversipdmust be a convex set. To achieve this, we use
the fact that PA associates a margin value with each class, and gefinR® (wheres is

the number of classes).

In our experiments, we used the datasES TER, MNI ST, USPS (training set only), and

| SOLET. These datasets are of size 20000, 70000, 7291 and 7797 respebNeBi and

USPS both contain images of handwritten digits and thus induce 10-class problems. The
other datasets contain image&{ TER) and utteranced SOLET) of the English alphabet.

We did not use the standard splits into training set and test set and instead performed cross-
validation in all of our experiments. For various valuestofve split each dataset into

parts, trained each algorithm using each of these parts and tested on-th@emaining

parts. Specifically, we ran this experiment for= 3,...,10. The reason for doing this

is that the experiment is most interesting when the training sets are small and the learning
task becomes difficult.

We applied the data-independent averaging and voting conversions, as well as the three
data-driven variants of these conversions (6 data-driven conversions in all). The interval
conversion was set to choose an interval containing 500 updates. The par@hvedsr
arbitrarily set to3. Additionally, we evaluated the test error of the last hypothesis gener-
ated by the online algorithn#,,,. It is common malpractice amongst practitioners to use

h., as if it were a batch hypothesis, instead of using an online-to-batch conversion. As a
byproduct of our experiments, we show thgt performs significantly worse than any of

the conversion techniques discussed in this paper. The kernel used in all of the experiments
is the Gaussian kernel with default kernel parameters. We would like to emphasize that our
goal was not to achieve state-of-the-art results on these datasets but rather to compare the
different conversion strategies on the same sequence of hypotheses. To achieve the best
results, one would have to tudéand the various kernel parameters.

The results for the different variants of the averaging conversion are depicted in Fig. 2.

last average average-sfx|| voting voting-sfx
LETTER 5-fold 299+ 1.8 21.24+0.5 | 20.5+0.6 23.4+0.8 | 21.54+0.8
LETTER 10-fold || 37.3 + 2.1 26.9+£0.7 | 26.5+£0.6 30.2+£1.0 | 27.9+£0.6

MNIST 5-fold 72+0.5 59+04 5.3+0.6 70+£0.5 6.5+0.5
MNIST 10-fold 13.8+2.3 9.5£0.8 9.1+0.8 8.7+ 0.5 8.0+0.5
USPS 5-fold 9.7+1.0 7.5+04 7.1+04 9.4+04 8.8+0.3

USPS 10-fold 12.7+ 4.7 10.1 £ 0.7 9.5 £0.8 125+£1.0 | 11.3£0.6
ISOLET 5-fold 20.1£3.8 176 +4.1 | 16.7£33 || 206£34 | 183+39
ISOLET 10-fold || 28.6 + 3.6 25.8+2.8 | 22.7+33 || 29.3£3.1 | 26.7£4.0

Table 1: Percent of errors averaged over thi@lds with standard deviation. Results are
given for the last online hypothesia,{,), the data-independent averaging and voting con-
versions, and their suffix variants. The lowest error on each row is shown in bold.

For each dataset and each training-set size, we present a bar-plot which represents by how
much each of the data-driven averaging conversions improves over the data-independent
averaging conversion. For instance, the left bar in each plot shows the difference between
the test errors of the suffix conversion and the data-independent conversion. A negative
value means that the data-driven technique outperforms the data-independent one. The
results clearly indicate that the suffix and tree-based conversions consistently improve over
the data-independent conversion. The interval conversion does not improve as much and
occasionally even looses to the data-independent conversion. However, this is a small price
to pay in situations where it is important to generate a compact kernel-based hypothesis.
Due to the lack of space, we omit a similar figure for the voting conversion and merely note
that the plots are very similar to the ones in Fig. 2.

In Table 1 we give some concrete values of test error, and compare data-independent and
data-driven versions of averaging and voting, using the suffix conversion. As a reference,
we also give the results obtained by the last hypothesis generated by the online algorithm.
In all of the experiments, the data-driven conversion outperforms the data-independent con-
version. In general, averaging exhibits better results than voting, while the last online hy-
pothesis is almost always inferior to all of the online-to-batch conversions.

References

[1] K. Azuma. Weighted sums of certain dependent random varialbtésoku Mathematical Jour-
nal, 68:357-367, 1967.
[2] N. Cesa-Bianchi, A. Conconi, and C.Gentile. On the generalization ability of on-line learning
algorithms.IEEE Transactions on Information Theqi3004.
[3] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive aggressive
algorithms.Journal of Machine Learning Researc006.
[4] K.Crammer, J. Kandola, and Y. Singer. Online classification on a budiets 16 2003.
[5] O. Dekel, S. Shalev-Shwartz, and Y. Singer. The Forgetron: A kernel-based perceptron on a
fixed budget.NIPS 18 2005.
[6] Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm.
Machine Learning37(3):277-296, 1999.
[7] S. 1. Gallant. Optimal linear discriminantfCPR 8 pages 849-852. IEEE, 1986.
[8] D. P. Helmbold and M. K. Warmuth. On weak learnindournal of Computer and System
Sciences50:551-573, 1995.
[9] Y. Li. Selective voting for perceptron-like on-line learning. IGML 17, 2000.
[10] N. Littlestone. From on-line to batch learninGOLT 2 pages 269-284, July 1989.
[11] N. Littlestone and M. Warmuth. Relating data compression and learnability. Unpublished
manuscript, November 1986.
[12] V. N. Vapnik. Statistical Learning TheoryWiley, 1998.
[13] J. Weston, A. Bordes, and L. Bottou. Online (and offline) on a tighter budd8TAT 102005.

