
Data-Driven Online to Batch Conversions

Ofer Dekel and Yoram Singer
School of Computer Science and Engineering

The Hebrew University, Jerusalem 91904, Israel
{oferd,singer}@cs.huji.ac.il

Abstract

Online learning algorithms are typically fast, memory efficient, and sim-
ple to implement. However, many common learning problems fit more
naturally in the batch learning setting. The power of online learning
algorithms can be exploited in batch settings by usingonline-to-batch
conversions techniques which build a new batch algorithm from an ex-
isting online algorithm. We first give a unified overview of three exist-
ing online-to-batch conversion techniques which do not use training data
in the conversion process. We then build upon thesedata-independent
conversions to derive and analyzedata-drivenconversions. Our conver-
sions find hypotheses with a small risk by explicitly minimizing data-
dependent generalization bounds. We experimentally demonstrate the
usefulness of our approach and in particular show that the data-driven
conversions consistently outperform the data-independent conversions.

1 Introduction

Batch learningis probably the most common supervised machine-learning setting. In the
batch setting, instances are drawn from a domainX and are associated with target values
from a target setY. The learning algorithm is given a training set of examples, where each
example is an instance-target pair, and attempts to identify an underlying rule that can be
used to predict the target values of new unseen examples. In other words, we would like
the algorithm togeneralizefrom the training set to the entire domain of examples. The
target spaceY can be either discrete, as in the case of classification, or continuous, as in
the case of regression. Concretely, the learning algorithm is confined to a predetermined
set of candidatehypothesesH, where each hypothesish ∈ H is a mapping fromX to
Y, and the algorithm must select a “good” hypothesis fromH. The quality of different
hypotheses inH is evaluated with respect to a loss functionℓ, whereℓ(y, y′) is interpreted
as the penalty for predicting the target valuey′ when the correct target isy. Therefore,
ℓ(y, h(x)) indicates how well hypothesish performs with respect to the example(x, y).
WhenY is a discrete set, we often use the 0-1 loss, defined byℓ(y, y′) = 1y 6=y′ . We also
assume that there exists a probability distributionD over the product spaceX × Y, and
that the training set was sampled i.i.d. from this distribution. Moreover, the existence ofD
enables us to reason about the average performance of an hypothesis over its entire domain.
Formally, therisk of an hypothesish is defined to be,

RiskD(h) = E(x,y)∼D [ℓ(y, h(x))] . (1)

The goal of a batch learning algorithm is to use the training set to find a hypothesis that
does well on average, or more formally, to findh ∈ H with a small risk.

In contrast to the batch learning setting,online learningtakes place in a sequence of rounds.
On any given round,t, the learning algorithm receives a single instancext ∈ X and predicts
its target value using an hypothesisht−1, which was generated on the previous round. On
the first round, the algorithm uses a default hypothesish0. Immediately after the prediction
is made, the correct target valueyt is revealed and the algorithm suffers an instantaneous
loss ofℓ(yt, ht−1(xt)). Finally, the online algorithm may use the newly obtained example
(xt, yt) to improve its prediction strategy, namely to replaceht−1 with a new hypothesis
ht. Alternatively, the algorithm may choose to stick with its current hypothesis and sets
ht = ht−1. An online algorithm is therefore defined by its default hypothesish0 and the
update rule it uses to define new hypotheses. Thecumulative losssuffered on a sequence
of rounds is the sum of instantaneous losses suffered on each one of the rounds in the
sequence. In the online setting there is typically no need for any statistical assumptions
since there is no notion of generalization. The goal of the online algorithm is simply to
suffer a small cumulative loss on the sequence of examples it is given, and examples that
are not in this sequence are entirely irrelevant.

Throughout this paper, we assume that we have access to a good online learning algorithm
A for the task on hand. Moreover,A is computationally efficient and easy to implement.
However, the learning problem we face fits much more naturally within the batch learning
setting. We would like to develop a batch algorithmB that exhibits the desirable charac-
teristics ofA but also has good generalization properties. A simple and powerful way to
achieve this is to use anonline-to-batch conversiontechnique. This is a general name for
any technique which usesA as a building block in the construction ofB. Several differ-
ent online-to-batch conversion techniques have been developed over the years. Littlestone
and Warmuth [11] introduced an explicit relation between compression and learnability,
which immediately lent itself to a conversion technique for classification algorithms. Gal-
lant [7] presented thePocket algorithm, a conversion of Rosenblatt’s onlinePerceptronto
the batch setting. Littlestone [10] presented theCross-Validationconversion which was
further developed by Cesa-Bianchi, Conconi and Gentile [2]. All of these techniques begin
by presenting the training set(x1, y1), . . . , (xm, ym) to A in some arbitrary order. AsA
performs them online rounds, it generates a sequence of online hypotheses which it uses to
make predictions on each round. This sequence includes the default hypothesish0 and the
m hypothesesh1, . . . , hm generated by the update rule. The aforementioned techniques all
share a common property: they all chooseh, the output of the batch algorithmB, to be one
of the online hypothesesh0, . . . , hm.

In this paper, we focus on a second family of conversions, which evolved somewhat later
and is due to the work of Helmbold and Warmuth [8], Freund and Schapire [6] and Cesa-
Bianchi, Conconi and Gentile [2]. The conversion strategies in this family also begin by
usingA to generate the sequence of online hypotheses. However, instead of relying on
a single hypothesis from the sequence, they seth to be some combination of the entire
sequence. Another characteristic shared by these three conversions is that the training data
does not play a part in determining how the online hypotheses are combined. That is, the
training data is not used in any way other than to generate the sequenceh0, . . . , hm. In
this sense, these conversion techniques aredata-independent. In this paper, we build on the
foundations of these data-independent conversions, and define conversion techniques that
explicitly use the training data to derive the batch algorithm from the online algorithm. By
doing so, we effectively define thedata-drivencounterparts of the algorithms in [8, 6, 2].

This paper is organized as follows. In Sec. 2 we review the data-independent conversion
techniques from [8, 6, 2] and give a simple unified analysis for all three conversions. At the
same time, we present a general framework which serves as a building-block for our data-
driven conversions. Then, in Sec. 3, we derive three special cases of the general framework

and demonstrate some useful properties of the data-driven conversions. Finally, in Sec. 4,
we compare the different conversion techniques on several benchmark datasets and show
that our data-driven approach outperforms the existing data-independent approach.

2 Voting, Averaging, and Sampling

The first conversion we discuss is thevoting conversion [6], which applies to problems
where the target spaceY is discrete (and relatively small), such as classification problems.
The conversion presents the training set(x1, y1), . . . , (xm, ym) to the online algorithmA,
which generates the sequence of online hypotheses,h0, . . . , hm. The conversion then out-
puts the hypothesishV, which is defined as follows: given an inputx ∈ X , each online
hypothesis casts a vote ofhi(x) and thenhV outputs the target value that receives the high-
est number of votes. For simplicity, assume that ties are broken arbitrarily. The second
conversion is theaveragingconversion [2] which applies to problems whereY is a convex
set. For example, this conversion is applicable to margin-based online classifiers or to re-
gression problems where, in both cases,Y = R. This conversion also begins by usingA to
generateh0, . . . , hm. Then the batch hypothesishA is defined to be 1

m+1

∑m

i=0 hi(x). The
third and last conversion discussed here is thesamplingconversion [8]. This conversion is
the most general and applicable to any learning problem, however this generality comes at
a price. The resulting hypothesis,hS, is a stochastic function and not a deterministic one.
In other words, if applied twice to the same instance,hS may output different target values.
Again, this conversion begins by applyingA to the training set and obtaining the sequence
of online hypotheses. Every timehS is evaluated, it randomly selects one ofh0, . . . , hm and
uses it to make the prediction. SincehS is a stochastic function, the definition ofRiskD(hS)
changes slightly and expectation in Eq. (1) is taken also over the random functionhS.

Simple data-dependent bounds on the risk ofhV, hA and hS can be derived, and these
bounds are special cases of the more general analysis given below. We now describe a
simple generalization of these three conversion techniques. It is reasonable to assume that
some of the online hypotheses generated byA are better than others. For instance, the
default hypothesish0 is determined without observing even a single training example. This
surfaces the question whether it is possible to isolate the “best” online hypotheses and only
use them to define the batch hypothesis. Formally, let[m] denote the set{0, . . . , m} and
let I be some non-empty subset of[m]. Now definehV

I (x) to be the hypothesis which
performs voting as described above, with the single difference that only the members of
{hi : i ∈ I} participate in the vote. Similarly, definehA

I (x) = (1/|I|)
∑

i∈I hi(x), and let
hS

I be the stochastic function that randomly chooses a function from the set{hi : i ∈ I}
every time it is evaluated, and predicts according to it. The data-independent conversions
presented in the beginning of this section are obtained by settingI = [m]. Our idea is to
use the training data to find a setI which induces the batch hypotheseshV

I , hA
I , andhS

I with
the smallest risk.

Since there is an exponential number of potential subsets of[m], we need to restrict our-
selves to a smaller set of candidate sets. Formally, letI be a family of subsets of[m], and
we restrict our search forI to the familyI. Following in the footsteps of [2], we make the
simplifying assumption that none of the sets inI include the largest indexm. This is a
technical assumption which can be relaxed at the price of a slightly less elegant analysis.
We use two intuitive concepts to guide our search forI. First, for any setJ ⊆ [m − 1],
defineL(J) = (1/|J |)

∑

j∈J ℓ(yj+1, hj(xj+1)). L(J) is the empirical evaluation of the
loss of the hypotheses indexed byJ . We would like to find a setJ for whichL(J) is small
since we expect that good empirical loss of the online hypotheses indicates a low risk of
the batch hypothesis. Second, we would like|J | to be large so that the presence of a few
bad online hypotheses inJ will not have a devastating effect on the performance of the
batch hypothesis. The trade-off between these two competing concepts can be formalized

as follows. LetC be a non-negative constant and define,

β(J) = L(J) + C |J |−
1

2 . (2)

The functionβ decreases as the average empirical lossL(J) decreases, and also as|J |
increases. It therefore captures the intuition described above. The functionβ serves as our
yardstick when evaluating the candidates inI. Specifically, we setI = arg minJ∈I β(J).
Below we formally justify our choice ofβ, and specifically show thatβ(J) is a rather tight
upper bound on the risk ofhA

J , hV
J andhS

J . The first lemma relates the risk of these functions
with the average risk of the hypotheses indexed byJ .

Lemma 1. Let(x1, y1), . . . , (xm, ym) be a sequence of examples which is presented to the
online algorithmA and leth0, . . . , hm be the resulting sequence of online hypotheses. Let
J be a non-empty subset of[m − 1] and letℓ : Y × Y → R+ be a loss function.(1) If ℓ is
the 0-1 loss thenRiskD(hV

J) ≤ (2/|J |)
∑

i∈J RiskD(hi(x)). (2) If ℓ is convex in its second
argument thenRiskD(hA

J) ≤ (1/|J |)
∑

i∈J RiskD(hi(x)). (3) For any loss functionℓ it
holds thatRiskD(hS

J) = (1/|J |)
∑

i∈J RiskD(hi(x)).

Proof. Beginning with the voting conversion, recall that the loss function being used is the
0-1 loss, namely there is a single correct prediction which incurs a loss of0 and every other
prediction incurs a loss of1. For any example(x, y), if more than half of the hypotheses
in {hi}i∈J predict the correct outcome then clearlyhV

J also predicts this outcome and
ℓ(y, hV

J(x)) = 0. Therefore, ifℓ(y, hV
J(x)) = 1 then at least half of the hypotheses in

{hi}i∈J make incorrect predictions and(|J |/2) ≤
∑

i∈J ℓ(y, hi(x)). We therefore get,

ℓ(y, hV
J(x)) ≤

2

|J |

∑

i∈J

ℓ(y, hi(x)) .

The above holds for any example(x, y) and therefore also holds after taking expectations
on both sides of the inequality. The bound now follows from the linearity of expectation
and the definition of the risk function in Eq. (1).

Moving on to the second claim of the lemma, we assume thatℓ is convex in its second
argument. The claim now follows from a direct application of Jensen’s inequality.

Finally, hS
J chooses its outcome by randomly choosing an hypothesis in{hi : i ∈ J},

where the probability of choosing each hypothesis in this set equals(1/|J |). Therefore, the
expected loss suffered byhS

J on an example(x, y) is (1/|J |)
∑

i∈J ℓ(y, hi(x)). The risk of
hS

J is simply the expected value of this term with respect to the random selection of(x, y).
Again using the linearity of expectation, we obtain the third claim of the lemma.

The next lemma relates the average risk of the hypotheses indexed byJ with the empirical
performance of these hypotheses,L(J). In the following lemma, we use capital letters to
emphasize that we are dealing with random variables.

Lemma 2. Let (X1, Y1), . . . , (Xm, Ym) be a sequence of examples independently sam-
pled according toD. Let,H0, . . . , Hm be the sequence of online hypotheses generated by
A while observing this sequence of examples. Assume that the loss functionℓ is upper-
bounded byR. Then for anyJ ⊆ [m − 1],

Pr

[

1

|J |

∑

i∈J

RiskD(Hi) > β(J)

]

< exp

(

−
C2

2R2

)

,

whereC is the constant used in the definition ofβ (Eq. (2)).

The proof of this lemma is a direct application of Azuma’s bound on the concentration of
Lipschitz martingales [1], and is identical to that of Proposition 1 in [2]. For concreteness,

we now focus on the averaging conversion and note that the analyses of the other two
conversion strategies are virtually identical. By combining the first claim of Lemma 1 with
Lemma 2, we get that for anyJ ∈ I it holds thatRiskD(hA

J) ≤ β(J) with probability at
least1 − exp

(
−C2/(2R2)

)
. Using the union bound,RiskD(hA

J) ≤ β(J) for all J ∈ I
simultaneously with probability at least,

1 − |I| exp

(

−
C2

2R2

)

.

The greater the value ofC, the moreβ is influenced by the term|J |. On the other hand,
a large value ofC increases the probability thatβ indeed upper boundsRiskD(hA

J) for all
J ∈ I. In conclusion, we have theoretically justified our choice ofβ in Eq. (2).

3 Concrete Data-Driven Conversions

In this section we build on the ideas of the previous section and derive three concrete data-
driven conversion techniques.

Suffix Conversion: An intuitive argument against selectingI = [m], as done by the data-
independent conversions, is that many online algorithms tend to generate bad hypotheses
during the first few rounds of learning. As previously noted, the default hypothesish0 is
determined without observing any training data, and we should expect the first few online
hypotheses to be inferior to those that are generated further along. This argument motivates
us to consider subsetsJ of the form{a, a + 1, . . . , m − 1}, wherea is a positive integer
less than or equal tom−1. Li [9] proposed this idea in the context of the voting conversion
and gave a heuristic criterion for choosinga. Our formal setting gives a different criterion
for choosinga. In this conversion we defineI to be the set of all suffixes of[m− 1]. After
the algorithm generatesh0, . . . , hm, we setI to beI = argminJ∈I β(J).

Interval Conversion: Kernel-based hypotheses are functions that take the form,h(x) =
∑n

j=1 αjK(zj ,x), whereK is a Mercer kernel,z1, . . . , zn are instances, often referred
to assupport patternsandα1, . . . , αn are real weights. A variety of different batch algo-
rithms produce kernel-based hypotheses, including the Support Vector Machine [12]. An
important learning problem, which is currently addressed by only a handful of algorithms,
is to learn a kernel-based hypothesish which is defined by at mostB support patterns. The
parameterB is a predefined constant often referred to as thebudgetof support patterns.
Naturally, kernel-based hypotheses which are represented by a few support patterns are
memory efficient and faster to calculate. A similar problem arises in the online learning
setting where the goal is to construct online algorithms where each online hypothesishi is
a kernel-based function defined by at mostB vectors. Several online algorithms have been
proposed for this problem [4, 13, 5]. First note that the data-independent conversions, with
I = [m], are inadequate for this setting. Although each individual online hypothesis is
defined by at mostB vectors,hA is defined by the union of these sets, which can be much
larger thanB.

To convert a budget-constrained online algorithmA into a budget-constrained batch al-
gorithm, we make an additional assumption on the update strategy employed byA. We
assume that wheneverA updates its online hypothesis, it adds a single new support pattern
into the set used to represent the kernel hypothesis, and possibly removes some other pat-
tern from this set. The algorithms in [4, 13, 5] all fall into this category. Therefore, if we
chooseI to be the set{a, a + 1, . . . , b} for some integers0 ≤ a < b < m, andA updates
its hypothesisk times during roundsa + 1 throughb, thenhA

I is defined by at mostB + k
support patterns. Concretely, defineI to be the set of all non-empty intervals in[m − 1].
With C set properly,β(J) boundsRiskD(hA

J) for everyJ ∈ I with high probability. Next,

J0,7

︷ ︸︸ ︷

J0,3

︷ ︸︸ ︷

J0,1

︷ ︸︸ ︷

h0 h1

J2,3

︷ ︸︸ ︷

h2 h3

J4,7

︷ ︸︸ ︷

J4,5

︷ ︸︸ ︷

h4 h5

J6,7

︷ ︸︸ ︷

h6 h7

J8,11

︷ ︸︸ ︷

J8,9

︷ ︸︸ ︷

h8 h9

J10,11

︷ ︸︸ ︷

h10 h11 h12 . . .

Figure 1: An illustration of the tree-based conversion.

generateh0, . . . , hm by runningA with a budget parameter ofB/2. Finally, chooseI to
be the set inI which contains at mostB/2 updates and also minimizes theβ function. By
construction, the resulting hypothesis,hA

I , is defined using at mostB support patterns.

Tree-Based Conversion: A drawback of the suffix conversions is that it must be per-
formed in two consecutive stages. Firsth0, . . . , hm are generated and stored in memory.
Only then can we calculateβ(J) for everyJ ∈ I and perform the conversion. Therefore,
the memory requirements of this conversions grow linearly withm. We now present a
conversion that can sidestep this problem by interleaving the conversion with the online
hypothesis generation. This conversion slightly deviates from the general framework de-
scribed in the previous section: instead of predefining a set of candidatesI, we construct
the optimal subsetI in a recursive manner. As a consequence, the analysis in the previous
section does not directly provide a generalization bound for this conversion. Assume for a
moment thatm is a power of2. For all0 ≤ a ≤ m − 1 defineJa,a = {a}. Now, assume
that we have already constructed the setsJa,b andJc,d, wherea, b, c, d are integers such
thata < d, b = (a + d − 1)/2, andc = b + 1. Given these sets, defineJa,d as follows:

Ja,d =

{
Ja,b if β(Ja,b) ≤ β(Jc,d) ∧ β(Ja,b) ≤ β(Ja,b ∪ Jc,d)
Jc,d if β(Jc,d) ≤ β(Ja,b) ∧ β(Jc,d) ≤ β(Ja,b ∪ Jc,d)
Ja,b ∪ Jc,d otherwise

. (3)

Finally, defineI = J0,m−1 and output the batch hypothesishA
I . An illustration of this

process is given in Fig. 1. Note that the definition ofI requires onlym − 1 recursive
evaluations of Eq. (3). Whenm is not a power of2, we can pad the sequence of online
hypotheses with virtual hypotheses, each of which attains an infinite loss. This conversion
can be performed in parallel with the online rounds since on roundt we already have all of
the information required to calculateJa,b for all b < t.

In the special case where the instances are vectors inR
n, h0, . . . , hm are linear hypotheses

and we use the averaging technique, the implementation of the tree-based conversion be-
comes memory efficient. Specifically, assume that eachhi takes the formhi(x) = wi · x
wherewi is a vector of weights inRn. In this case, storing an online hypothesishi is
equivalent to storing its weight vectorwi. For anyJ ⊆ [m− 1], storing

∑

j∈J hj requires
storing the singlen-dimensional vector

∑

j∈J wj . Hence, once we calculateJa,b we can
discard the original online hypothesesha, . . . , hb and instead merely keephA

Ja,b
. Moreover,

in order to calculateβ we do not need to keep the setJa,b itself but rather the valuesL(Ja,b)
and|Ja,b|. Overall, storinghA

Ja,b
, L(Ja,b), and|Ja,b| requires only a constant amount of

memory. It can be verified using an inductive argument that the overall memory utilization
of this conversion isO(log(m)), which is significantly less than theO(m) space required
by the suffix conversion.

4 Experiments

We now turn to an empirical evaluation of the averaging and voting conversions. We
chose multiclass classification as the underlying task and used the multiclass version of

3-fold 4-fold 5-fold 6-fold 7-fold 8-fold 9-fold 10-fold

L
E

T
T

E
R

−2

0

2

M
N

IS
T

−1

0

1

U
S

P
S

−1

0

1

IS
O

L
E

T

S I T
−4

0

4

S I T S I T S I T S I T S I T S I T S I T

Figure 2: Comparison of the three data-driven averaging conversions with the data-
independent averaging conversion, for different datasets (Y-axis) and different training-set
sizes (X-axis). Each bar shows the difference between the error percentages of a data-
driven conversion (suffix (S), interval (I) or tree-based(T)) and of the data-independent
conversion. Error bars show standard deviation over thek folds.

thePassive-Aggressive(PA) algorithm [3] as the online algorithm. The PA algorithm is a
kernel-based large-margin online classifier. To apply the voting conversion,Y should be a
finite set. Indeed, in multiclass categorization problems the setY consists of all possible
labels. To apply the averaging conversionY must be a convex set. To achieve this, we use
the fact that PA associates a margin value with each class, and defineY = R

s (wheres is
the number of classes).

In our experiments, we used the datasetsLETTER, MNIST, USPS (training set only), and
ISOLET. These datasets are of size 20000, 70000, 7291 and 7797 respectively.MNIST and
USPS both contain images of handwritten digits and thus induce 10-class problems. The
other datasets contain images (LETTER) and utterances (ISOLET) of the English alphabet.
We did not use the standard splits into training set and test set and instead performed cross-
validation in all of our experiments. For various values ofk, we split each dataset intok
parts, trained each algorithm using each of these parts and tested on thek − 1 remaining
parts. Specifically, we ran this experiment fork = 3, . . . , 10. The reason for doing this
is that the experiment is most interesting when the training sets are small and the learning
task becomes difficult.

We applied the data-independent averaging and voting conversions, as well as the three
data-driven variants of these conversions (6 data-driven conversions in all). The interval
conversion was set to choose an interval containing 500 updates. The parameterC was
arbitrarily set to3. Additionally, we evaluated the test error of the last hypothesis gener-
ated by the online algorithm,hm. It is common malpractice amongst practitioners to use
hm as if it were a batch hypothesis, instead of using an online-to-batch conversion. As a
byproduct of our experiments, we show thathm performs significantly worse than any of
the conversion techniques discussed in this paper. The kernel used in all of the experiments
is the Gaussian kernel with default kernel parameters. We would like to emphasize that our
goal was not to achieve state-of-the-art results on these datasets but rather to compare the
different conversion strategies on the same sequence of hypotheses. To achieve the best
results, one would have to tuneC and the various kernel parameters.

The results for the different variants of the averaging conversion are depicted in Fig. 2.

last average average-sfx voting voting-sfx
LETTER 5-fold 29.9± 1.8 21.2± 0.5 20.5± 0.6 23.4± 0.8 21.5± 0.8

LETTER 10-fold 37.3± 2.1 26.9± 0.7 26.5± 0.6 30.2± 1.0 27.9± 0.6

MNIST 5-fold 7.2± 0.5 5.9± 0.4 5.3± 0.6 7.0± 0.5 6.5± 0.5

MNIST 10-fold 13.8± 2.3 9.5± 0.8 9.1± 0.8 8.7± 0.5 8.0± 0.5

USPS 5-fold 9.7± 1.0 7.5± 0.4 7.1± 0.4 9.4± 0.4 8.8± 0.3

USPS 10-fold 12.7± 4.7 10.1± 0.7 9.5± 0.8 12.5± 1.0 11.3± 0.6

ISOLET 5-fold 20.1± 3.8 17.6± 4.1 16.7± 3.3 20.6± 3.4 18.3± 3.9

ISOLET 10-fold 28.6± 3.6 25.8± 2.8 22.7± 3.3 29.3± 3.1 26.7± 4.0

Table 1: Percent of errors averaged over thek folds with standard deviation. Results are
given for the last online hypothesis (hm), the data-independent averaging and voting con-
versions, and their suffix variants. The lowest error on each row is shown in bold.

For each dataset and each training-set size, we present a bar-plot which represents by how
much each of the data-driven averaging conversions improves over the data-independent
averaging conversion. For instance, the left bar in each plot shows the difference between
the test errors of the suffix conversion and the data-independent conversion. A negative
value means that the data-driven technique outperforms the data-independent one. The
results clearly indicate that the suffix and tree-based conversions consistently improve over
the data-independent conversion. The interval conversion does not improve as much and
occasionally even looses to the data-independent conversion. However, this is a small price
to pay in situations where it is important to generate a compact kernel-based hypothesis.
Due to the lack of space, we omit a similar figure for the voting conversion and merely note
that the plots are very similar to the ones in Fig. 2.

In Table 1 we give some concrete values of test error, and compare data-independent and
data-driven versions of averaging and voting, using the suffix conversion. As a reference,
we also give the results obtained by the last hypothesis generated by the online algorithm.
In all of the experiments, the data-driven conversion outperforms the data-independent con-
version. In general, averaging exhibits better results than voting, while the last online hy-
pothesis is almost always inferior to all of the online-to-batch conversions.

References
[1] K. Azuma. Weighted sums of certain dependent random variables.Tohoku Mathematical Jour-

nal, 68:357–367, 1967.
[2] N. Cesa-Bianchi, A. Conconi, and C.Gentile. On the generalization ability of on-line learning

algorithms.IEEE Transactions on Information Theory, 2004.
[3] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive aggressive

algorithms.Journal of Machine Learning Research, 2006.
[4] K. Crammer, J. Kandola, and Y. Singer. Online classification on a budget.NIPS 16, 2003.
[5] O. Dekel, S. Shalev-Shwartz, and Y. Singer. The Forgetron: A kernel-based perceptron on a

fixed budget.NIPS 18, 2005.
[6] Y. Freund and R. E. Schapire. Large margin classification using the perceptron algorithm.

Machine Learning, 37(3):277–296, 1999.
[7] S. I. Gallant. Optimal linear discriminants.ICPR 8, pages 849–852. IEEE, 1986.
[8] D. P. Helmbold and M. K. Warmuth. On weak learning.Journal of Computer and System

Sciences, 50:551–573, 1995.
[9] Y. Li. Selective voting for perceptron-like on-line learning. InICML 17, 2000.

[10] N. Littlestone. From on-line to batch learning.COLT 2, pages 269–284, July 1989.
[11] N. Littlestone and M. Warmuth. Relating data compression and learnability. Unpublished

manuscript, November 1986.
[12] V. N. Vapnik. Statistical Learning Theory. Wiley, 1998.
[13] J. Weston, A. Bordes, and L. Bottou. Online (and offline) on a tighter budget.AISTAT 10, 2005.

