
Robust design of biological experiments

Patrick Flaherty
EECS Department

University of California
Berkeley, CA 94720

flaherty@berkeley.edu

Michael I. Jordan
Computer Science and Statistics

University of California
Berkeley, CA 94720

jordan@cs.berkeley.edu

Adam P. Arkin
Bioengineering Department,

LBL, Howard Hughes Medical Institute
University of California

Berkeley, CA 94720
aparkin@lbl.gov

Abstract

We address the problem of robust, computationally-efficient design of bi-
ological experiments. Classical optimal experiment design methods have
not been widely adopted in biological practice, in part because the result-
ing designs can be very brittle if the nominal parameter estimates for the
model are poor, and in part because of computational constraints. We
present a method for robust experiment design based on a semidefinite
programming relaxation. We present an application of this method to the
design of experiments for a complex calcium signal transduction path-
way, where we have found that the parameter estimates obtained from
the robust design are better than those obtained from an “optimal” de-
sign.

1 Introduction

Statistical machine learning methods are making increasing inroads in the area of biolog-
ical data analysis, particularly in the context of genome-scale data, where computational
efficiency is paramount. Learning methods are particularly valuable for their ability to
fuse multiple sources of information, aiding the biologist to interpret a phenomenon in its
appropriate cellular, genetic and evolutionary context. At least as important to the biolo-
gist, however, is to use the results of data analysis to aid in the design of further exper-
iments. In this paper we take up this challenge—we show how recent developments in
computationally-efficient optimization can be brought to bear on the problem of the de-
sign of experiments for complex biological data. We present results for a specific model
of calcium signal transduction in which choices must be made among 17 kinds of RNAi
knockdown experiments.

There are three main objectives for experiment design: parameter estimation, hypothesis
testing and prediction. Our focus in this paper is parameter estimation, specifically in the
setting of nonlinear kinetic models [1]. Suppose in particular that we have a nonlinear



model y = f(x, θ) + ε, ε ∼ N (0, σ2), where x ∈ X represents the controllable conditions
of the experiment (such as dose or temperature), y is the experimental measurement and
θ ∈ R

p is the set of parameters to be estimated. We consider a finite menu of available
experiments X = {x1, . . . , xm}. Our objective is to select the best set of N experiments
(with repeats) from the menu. Relaxing the problem to a continuous representation, we
solve for a distribution over the design points and then multiply the weights by N at the
end [2]. The experiment design is thus

ξ =

{

x1 , . . . , xm

w1 , . . . , wm

}

,

m
∑

i=1

wi = 1, wi ≥ 0,∀i, (1)

and it is our goal to select values of wi that satisfy an experimental design criterion.

2 Background

We adopt a standard least-squares framework for parameter estimation. In the nonlinear
setting this is done by making a Taylor series expansion of the model about an estimate
θ0 [3]

f(x, θ) ≈ f(x, θ0) + V (θ − θ0), (2)

where V is the Jacobian matrix of the model; the ith row of V is vT
i = ∂f(xi,θ)

∂θ

∣

∣

∣

θ0

.

The least-squares estimate of θ is θ̂ = θ0+
(

V T WV
)−1

V T W (y − f(x, θ0)), where W =

diag(w). The covariance matrix for the parameter estimate is cov(θ̂|ξ) = σ2
(

V T WV
)−1

,
which is the inverse of the observed Fisher information matrix.

The aim of optimal experiment design methods is to minimize the covariance matrix of the
parameter estimate [4, 5, 6]. There are two well-known difficulties that must be surmounted
in the case of nonlinear models [6]:

• The optimal design depends on an evaluation of the derivative of the model with
respect to the parameters at a particular parameter estimate. Given that our goal is
parameter estimation, this involves a certain circularity.

• Simple optimal design procedures tend to concentrate experimental weight on
only a few design points [7]. Such designs are overly optimistic about the ap-
propriateness of the model, and provide little information about possible lack of
fit over a wider experimental range.

There have been three main responses to these problems: sequential experiment design [7],
Bayesian methods [8], and maximin approaches [9].

In the sequential approach, a working parameter estimate is first used to construct a tenta-
tive experiment design. Data are collected under that design and the parameter estimate is
updated. The procedure is iterated in stages. While heuristically reasonable, this approach
is often inapplicable in practice because of costs associated with experiment set-up time.

In the Bayesian approach exemplified by [8], a proper prior distribution is constructed for
the parameters to be estimated. The objective function is the KL divergence between the
prior distribution and the expected posterior distribution; this KL divergence is maximized
(thereby maximizing the amount of expected information in the experiment design). Sensi-
tivity to priors is a serious concern, however, particularly in the biological setting in which
it can be quite difficult to choose priors for quantities such as bulk rates for a complex
process.

The maximin approach considers a bounded range for each parameter and finds the optimal
design for the worst case parameters in that range. The major difficulties with this approach
are computational, and its main applications have been to specialized problems [7].



The approach that we present here is closest in spirit to the maximin approach. We view
both of the problems discussed above as arguments for a robust design, one which is in-
sensitive to the linearization point and to model error. We work within the framework of
E-optimal design (see below) and consider perturbations to the rank-one Fisher information
matrix for each design point. An optimization with respect to such perturbations yields a
robust semidefinite program [10, 11, 12].

3 Optimal Experiment Design

The three most common scalar measures of the size of the parameter covariance matrix in
optimal experiment design are:

• D-optimal design: determinant of the covariance matrix.

• A-optimal design: trace of the covariance matrix.

• E-optimal design: maximum eigenvalue of the covariance matrix.

We adopt the E-optimal design criterion, and formulate the design problem as follows:

P0 : p∗0 = min
w

λmax





(

m
∑

i=1

wiviv
T
i

)−1


 s.t.

m
∑

i=1

wi = 1 (3)

wi ≥ 0,∀i,

where λmax[M ] is the maximum eigenvalue of a matrix M . This problem can be recast as
the following semidefinite program [5]:

P0 : p∗0 = max
w,s

s s.t.

m
∑

i=1

wiviv
T
i ≥ sIp (4)

m
∑

i=1

wi = 1, wi ≥ 0,∀i,

which forms the basis of the robust extension that we develop in the following section.

4 Robust Experiment Design

The uncertain parameters appear in the experiment design optimization problem through
the Jacobian matrix, V . We consider additive unstructured perturbations on the Jacobian
or “data” in this problem. The uncertain observed Fisher information matrix is F (w,∆) =
∑m

i=1 wi(viv
T
i −∆i), where ∆i is a p× p matrix for i = 1, . . . ,m. We consider a spectral

norm bound on the magnitude of the perturbations such that ‖blkdiag(∆1, . . . , ∆m)‖ ≤ ρ.

Incorporating the perturbations, the E-optimal experiment design problem with uncertainty
based on (4) can be cast as the following minimax problem:

Pρ : p∗ρ = minw,s max‖∆‖≤ρ −s

subject to
∑m

i=1 wi(viv
T
i − ∆i) ≥ sIp

∆ = blkdiag(∆1, . . . , ∆m)
∑m

i=1 wi = 1, wi ≥ 0,∀i.

(5)

We will call equation (5) an E-robust experiment design.



To implement the program efficiently, we can recast the linear matrix inequality in (5) in a
linear fractional representation:

F (w, s,∆) = F (w, s) + L∆R(w) + R(w)T ∆T LT ≥ 0,

where

F (w, s) =
m
∑

i=1

wiviv
T
i − sIp, R(w) = 1√

2
(w ⊗ Ip)

L =
−1√

2

(

1T
m ⊗ Ip

)

, ∆ = blkdiag(∆1, . . . , ∆m).

Taking ∆1 = · · · = ∆m, a special case of the S-procedure [11] yields the following
semidefinite program:

Pρ : p∗ρ = minw,s,τ −s

subject to

[

∑m
i=1 wiviv

T
i − sIp − m

2 τIp wT ⊗ ρ√
2
Ip

w ⊗ ρ√
2
Ip τImp

]

≥ 0

∑m
i=1 wi = 1, wi ≥ 0,∀i.

(7)

If ρ = 0 we recover (4). Using the Schur complement the first constraint in (7) can be
further simplified to

m
∑

i=1

wiviv
T
i − ρ

√
m‖w‖2 ≥ sIp, (8)

which makes the regularization of the optimization problem (4) explicit. The uncertainty
bound, ρ, serves as a weighting parameter for a Tikhonov regularization term.

5 Results

We demonstrate the robust experiment design on two models of biological systems. The
first model is the Michaelis-Menten model of a simple enzyme reaction system. This
model, derived from mass-action kinetics, is a fundamental building block of many mecha-
nistic models of biological systems. The second example is a model of a complex calcium
signal transduction pathway in macrophage immune cells. In this example we consider
RNAi knockdowns at a variety of ligand doses for the estimation of receptor level parame-
ters.

5.1 Michaelis-Menten Reaction Model

The Michaelis-Menten model is a common approximation to an enzyme-substrate reac-

tion [13]. The basic chemical reaction that leads to this model is E+S
k+1−−⇀↽−−
k
−1

C
k2−→ E+P ,

where E is the enzyme concentration, S is the substrate concentration and P is the product
concentration. We employ mass action kinetics to develop a differential equation model for
this reaction system [13]. The velocity of the reaction is defined to be the rate of product
formation, V0 = ∂P

∂t

∣

∣

t0
. The initial velocity of the reaction is

V0 ≈ θ1x

θ2 + x
, (9)

where

θ1 = k+2E0, θ2 =
k−1 + k+2

k+1
. (10)



We have taken the controllable factor, x, in this system to be the initial substrate con-
centration S0. The parameter θ1 is the saturating velocity and θ2 is the initial substrate
concentration at which product is formed at one-half the maximal velocity. In this example
θ1 = 2 and θ2 = 2 are the total enzyme and initial substrate concentrations. We consider
six initial substrate concentrations as the menu of experiments, X =

{

1
8 , 1, 2, 4, 8, 16

}

.

Figure 1 shows the robust experiment design weights as a function of the uncertainty pa-
rameter with the Jacobian computed at the true parameter values. When ρ is small, the
experimental weight is concentrated on only two design points. As ρ → ρmax the design
converges to a uniform distribution over the entire menu of design points. In a sense, this
uniform allocation of experimental energy is most robust to parameter uncertainty. Inter-
mediate values of ρ yield an allocation of design points that reflects a tradeoff between
robustness and nominal optimality.
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Figure 1: Michaelis-Menten model experiment design weights as a function of ρ.

For moderate values of ρ we gain significantly in terms of robustness to errors in viv
T
i , at

a moderate cost to maximal value of the minimum eigenvalues of the parameter estimate
covariance matrix. Figure 2 shows the efficiency of the experiment design as a function of
ρ and the prior estimate θ02 used to compute the Jacobian matrix. The E-efficiency of a
design is defined to be

efficiency ,
λmax

[

cov
(

θ̂|θ, ξ0

)]

λmax

[

cov
(

θ̂|θ0, ξρ

)] . (11)

If the Jacobian is computed at the correct point in parameter space the optimal design
achieves maximal efficiency. As the distance between θ0 and θ grows the efficiency of the
optimal design decreases rapidly. If the estimate, θ02, is eight instead of the true value,
two, the efficiency of the optimal design at θ0 is 36% of the optimal design at θ. However,
at the cost of a decrease in efficiency for parameter estimates close to the true parameter
value we guarantee the efficiency is better for points further from the true parameters with
a robust design. For example, for ρ = 0.001 the robust design is less efficient for the range
0 < θ02 < 7, but is more efficient for 7 < θ02 < 16.

5.2 Calcium Signal Transduction Model

When certain small molecule ligands such as the anaphylatoxin C5a are introduced into
the environment of an immune cell a complex chain of chemical reactions leads to the
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Figure 2: Efficiency of robust designs as a function of ρ and perturbations in the prior
parameter estimate θ02.

transduction of the extracellular ligand concentration information and a transient increase
in the intracellular calcium concentration. This chain of reactions can be mathematically
modeled using the principles of mass-action kinetics and nonlinear ordinary differential
equations. We consider specifically the model presented in [14] which was developed for
the P2Y2 receptor, modifying the model for our data on the C5a receptor.

The menu of available experiments is indexed by one of two different cell lines in combina-
tion with different ligand doses. The cell lines are: wild-type and a GRK2 knockdown line.
GRK2 is a protein that represses signaling in the G-protein receptor complex. When its
concentration is decreased with interfering RNA the repression of the signal due to GRK2
is reduced. There are 17 experiments on the menu and we choose to do 100 experiments
allocated according the experiment design. For each experiment we are able measure the
transient calcium spike peak height using a fluorescent calcium dye. We are concerned
with estimating three C5A receptor parameters: K1, kp, kdeg which are detailed in [14].
We have selected the initial parameter estimates based on a least-squares fit to a separate
data set of 67 experiments on a wild-type cell line with a ligand concentration of 250nM.
We have estimated, from experimental data, the mean and variance for all of the experi-
ments in our menu. Observations are simulated from these data to obtain the least-squares
parameter estimate for the optimal, robust (ρ = 1.5 × 10−6) and uniform experiment de-
signs.

Figure 3 shows the model fits with associated 95% confidence bands for the wild-type and
knockdown cell lines for the parameter estimates from the three experiment designs. A
separate validation data set is generated uniformly across the design menu. Compared to
the optimal design, the parameter estimates based on the robust design provide a better
fit across the whole dose range for both cell types as measured by mean-squared residual
error.

Note also that the measured response at high ligand concentration is better fit with param-
eters estimated from the robust design. Near 1µM of C5a concentration the peak height is
predicted to decrease slightly in the wild-type cell line, but plateaus for the GRK2 knock-
down cell line. This matches the biochemical understanding that GRK2 acts as a repressor
of signaling.
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Figure 3: Model predictions based on the least squares parameter estimate using data ob-
served from the optimal, robust and uniform design. The predicted peak height curve (black
line) based on the robust design data is shifted to the left compared to the peak height curve
based on the optimal design data and matches the validation sample (shown as blue dots)
more accurately.

6 Discussion

The methodology of optimal experiment design leads to efficient algorithms for the
construction of designs in general nonlinear situations [15]. However, these variance-
minimizing designs fail to account for uncertainty in the nominal parameter estimate and
the model. We present a methodology, based on recent advances in semidefinite program-
ming, that retains the advantages of the general purpose algorithm while explicitly incor-
porating uncertainty.

We demonstrated this robust experiment design method on two example systems. In the
Michaelis-Menten model, we showed that the E-optimal design is recovered for ρ = 0 and
the uniform design is recovered as ρ → ρmax. It was also shown that the robust design is
more efficient than the optimal for large perturbations of the nominal parameter estimate
away from the true parameter.

The second example, of a calcium signal transduction model, is a more realistic case of
the need for experiment design in high-throughput biological research. The model cap-
tures some of the important kinetics of the system, but is far from complete. We require
a reasonably accurate model to make further predictions about the system and drive a set
of experiments to estimate critical parameters of the model more accurately. The resulting
robust design spreads some experiments across the menu, but also concentrates on experi-
ments that will help minimize the variance of the parameter estimates.

These robust experiment designs were obtained using SeDuMi 1.05 [16]. The design for the
calcium signal transduction model takes approximately one second on a 2GHz processor,
which is less time than required to compute the Jacobian matrix for the model.

Research in machine learning has led to significant advances in computationally-efficient



data analysis methods, allowing increasingly complex models to be fit to biological data.
Challenges in experimental design are the flip side of this coin—for complex models to
be useful in closing the loop in biological research it is essential to begin to focus on the
development of computationally-efficient experimental design methods.
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