
On Local Rewards and Scaling Distributed
Reinforcement Learning

J. Andrew Bagnell
Robotics Institute

Carnegie Mellon University
Pittsburgh, PA 15213

dbagnell@ri.cmu.edu

Andrew Y. Ng
Computer Science Department

Stanford University
Stanford, CA 94305

ang@cs.stanford.edu

Abstract

We consider the scaling of the number of examples necessary to achieve
good performance in distributed, cooperative, multi-agent reinforcement
learning, as a function of the the number of agentsn. We prove a worst-
case lower bound showing that algorithms that rely solely on aglobal
reward signal to learn policies confront a fundamental limit: They re-
quire a number of real-world examples that scales roughly linearly in the
number of agents. For settings of interest with a very large number of
agents, this is impractical. We demonstrate, however, that there is a class
of algorithms that, by taking advantage oflocal reward signals in large
distributed Markov Decision Processes, are able to ensure good perfor-
mance with a number of samples that scales asO(log n). This makes
them applicable even in settings with a very large number of agentsn.

1 Introduction

Recently there has been great interest in distributed reinforcement learning problems where
a collection of agents with independent action choices attempts to optimize a joint perfor-
mance metric. Imagine, for instance, a traffic engineering application where each traffic
signal may independently decide when to switch colors, and performance is measured by
aggregating the throughput at all traffic stops. Problems with such factorizations where the
global reward decomposes in to a sum oflocal rewards are common and have been studied
in the RL literature.[10]

The most straightforward and common approach to solving these problems is to apply one
of the many well-studied single agent algorithms to the global reward signal. Effectively,
this treats the multi-agent problem as a single agent problem with a very large action space.
Peshkin et al.[9] establish that policy gradient learning factorizes into independent policy
gradient learning problems for each agent using the global reward signal. Chang et al.[3]
use global reward signals to estimate effective local rewards for each agent. Guestrin et
al. [5] consider coordinating agent actions using the global reward. We argue from an
information theoretic perspective that such algorithms are fundamentally limited in their
scalability. In particular, we show in Section 3 that as a function of the number of agents
n, such algorithms will need to see1 Ω̃(n) trajectories in the worst case to achieve good
performance.

We suggest an alternate line of inquiry, pursued as well by other researchers (including

1Big-Ω̃ notation omits logarithmic terms, similar to how big-Ω notation drops constant values.

notably[10]), of developing algorithms that capitalize on the availability of local reward
signals to improve performance. Our results show that such local information can dramat-
ically reduce the number of examples necessary for learning toO(log n). One approach
that the results suggest to solving such distributed problems is to estimate model parameters
from all local information available, and then to solve the resulting model offline. Although
this clearly still carries a highcomputationalburden, it is much preferable to requiring a
large amount of real-world experience. Further, useful approximate multiple agent Markov
Decision Process (MDP) solvers that take advantage of local reward structure have been
developed.[4]

2 Preliminaries
We consider distributed reinforcement learning problems, modeled as MDPs, in which
there aren (cooperative) agents, each of which can directly influence only a small number
of its neighbors. More formally, let there ben agents, each with a finite state spaceS of
size|S| states and a finite action spaceA of size|A|. The joint state space of all the agents
is thereforeSn, and the joint action spaceAn. If st ∈ Sn is the joint state of the agents at
time t, we will uses

(i)
t to denote the state of agenti. Similarly, leta(i)

t denote the action of
agenti.

For each agenti ∈ {1, . . . , n}, we let neigh(i) ⊆ {1, . . . , n} denote the subset of
agents thati’s state directly influences. For notational convenience, we assume that if
i ∈ neigh(j), thenj ∈ neigh(i), and thati ∈ neigh(i). Thus, the agents can be viewed
as living on the vertices of a graph, where agents have a direct influence on each other’s
state only if they are connected by an edge. This is similar to the graphical games formal-
ism of [7], and is also similar to the Dynamic Bayes Net (DBN)-MDP formalisms of[6]
and[2]. (Figure 1 depicts a DBN and an agent influence graph.) DBN formalisms allow
the more refined notion of directionality in the influence between neighbors.

More formally, each agenti is associated with a CPT (conditional probability table)
Pi(s

(i)
t+1|s

(neigh(i))
t , a

(i)
t), wheres

(neigh(i))
t denotes the state of agenti’s neighbors at time

t. Given the joint actiona of the agents, the joint state evolves according to

p(st+1|st, at) =

n
∏

i=1

p(s
(i)
t+1|s

(neigh(i))
t , a

(i)
t). (1)

For simplicity, we have assumed that agenti’s state is directly influenced by the states of
neigh(i) but not their actions; the generalization offers no difficulties. The initial states1

is distributed according to some initial-state distributionD.

A policy is a mapπ : Sn 7→ An. Writing π out explicitly as a vector-valued function, we
haveπ(s) = (π1(s), . . . , πn(s)), whereπi(s) : Sn 7→ A is the local policy of agenti. For
some applications, we may wish to consider only policies in which agenti chooses its local
action as a function of only its local states(i) (and possibly its neighbors); in this case,πi

can be restricted to depend only ons(i).

Each agent has alocal reward function Ri(s
(i), a(i)), which takes values in the unit inter-

val [0, 1]. The total payoff in the MDP at each step isR(s, a) = (1/n)
∑n

i=1 R(s(i), a(i)).
We call thisR(s, a) theglobal reward function, since it reflects the total reward received
by the joint set of agents. We will consider the finite-horizon setting, in which the MDP
terminates afterT steps. Thus, the utility of a policyπ in an MDPM is

U(π) = UM (π) = Es1∼D[V π(s1)] = E

[

1

n

T
∑

t=1

n
∑

i=1

Ri(s
(i)
t , a

(i)
t)|π

]

.

In the reinforcement learning setting, the dynamics (CPTs) and rewards of the problem are
unknown, and a learning algorithm has to take actions in the MDP and use the resulting
observations of state transitions and rewards to learn a good policy. Each “trial” taken by a
reinforcement learning algorithm shall consist of aT -step sequence in the MDP.

Figure 1:(Left) A DBN description of a multi-agent MDP. Each row of (round) nodes in the DBN
corresponds to one agent. (Right) A graphical depiction of the influence effects in a multi-agent
MDP. A connection between nodes in the graph implies arrows connecting the nodes in the DBN.

Our goal is to characterize the scaling of the sample complexity for various reinforcement
learning approaches (i.e., how many trials they require in order to learn a near-optimal
policy) for large numbers of agentsn. Thus, in our bounds below, no serious attempt has
been made to make our bounds tight in variables other thann.

3 Global rewards hardness result
Below we show that if an RL algorithm uses only the global reward signal, then there
exists a very simple MDP—one with horizon,T = 1, only one state/trivial dynamics, and
two actions per agent—on which the learning algorithm will requireΩ̃(n) trials to learn
a good policy. Thus, such algorithms do not scale well to large numbers of agents. For
example, consider learning in the traffic signal problem described in the introduction with
n = 100, 000 traffic lights. Such an algorithm may then require on the order of100, 000
days of experience (trials) to learn. In contrast, in Section 4, we show that if a reinforcement
learning algorithm is given access to the local rewards, it can be possible to learn in such
problems with an exponentially smallerO(log n) sample complexity.

Theorem 3.1: Let any0 < ǫ < 0.05 be fixed. Let any reinforcement learning algorithmL
be given that only uses theglobal rewardsignalR(s), and does not use the local rewards
Ri(s

(i)) to learn (other than through their sum). Then there exists an MDP with time
horizonT = 1, so that:

1. The MDP is very “simple” in that it has only one state (|S| = 1, |Sn| = 1); trivial
state transition probabilities (sinceT = 1); two actions per agent (|A| = 2); and
deterministic binary (0/1)-valued local reward functions.

2. In order for L to output a policyπ̂ that is near-optimal satisfying2 U(π̂) ≥
maxπ U(π) − ǫ,it is necessary that the number of trialsm be at least

m ≥
0.32n + log(1/4)

log(n + 1)
= Ω̃(n).

Proof. For simplicity, we first assume thatL is a deterministic learning algorithm, so that
in each of them trials, its choice of action is some deterministic function of the outcomes
of the earlier trials. Thus, in each of them trials,L chooses a vector of actionsa ∈ AN ,
and receives the global reward signalR(s, a) = 1

n

∑n

i=1 R(s(i), a(i)). In our MDP, each
local rewardR(s(i), a(i)) will take values only 0 and 1. Thus,R(s, a) can take onlyn + 1
different values (namely,0

n
, 1

n
, . . . , n

n
). SinceT = 1, the algorithm receives only one such

reward value in each trial.

Let r1, . . . , rm be them global reward signals received byL in the m trials. SinceL is
deterministic, its output policŷπ will be chosen as some deterministic function of these

2For randomized algorithms we consider instead the expectation ofU(π̂) under the algorithm’s
randomization.

rewardsr1, . . . , rm. But the vector(r1, . . . , rm) can take on only(n+1)m different values
(since eachrt can take onlyn + 1 different values), and thuŝπ itself can also take only at
most(n + 1)m different values. LetΠm denote this set of possible values forπ̂. (|Πm| ≤
(n + 1)m).

Call each local agent’s two actionsa1, a2. We will generate an MDP with randomly chosen
parameters. Specifically, each local rewardRi(s

(i), a(i)) function is randomly chosen with
equal probability to either give reward 1 for actiona1 and reward 0 for actiona2; or vice
versa. Thus, each local agent has one “right” action that gives reward 1, but the algorithm
has to learn which of the two actions this is. Further, by choosing the right actions, the
optimal policyπ∗ attainsU(π∗) = 1.

Fix any policyπ. ThenUM (π) = 1
n

∑n

i=1 R(s(i), π(s(i))) is the mean ofn independent
Bernoulli(0.5) random variables (since the rewards are chosen randomly), and has expected
value 0.5. Thus, by the Hoeffding inequality,P (UM (π) ≥ 1−2ǫ) ≤ exp(−2(0.5−2ǫ)2n).
Thus, taking a union bound over all policiesπ ∈ ΠM , we have

P (∃π ∈ ΠM s.t.UM (π) ≥ 1 − 2ǫ) ≤ |ΠM | exp(−2(0.5 − 2ǫ)2n) (2)

≤ (n + 1)m exp(−2(0.5 − 2ǫ)2n) (3)
Here, the probability is over the random MDPM . But sinceL outputs a policy inΠM , the
chance ofL outputting a policyπ̂ with UM (π̂) ≥ 1 − 2ǫ is bounded by the chance that
there exists such a policy inΠM . Thus,

P (UM (π̂) ≥ 1 − 2ǫ) ≤ (n + 1)m exp(−2(0.5 − 2ǫ)2n). (4)
By setting the right hand side to1/4 and solving form, we see that so long as

m <
2(0.5 − 2ǫ)2n + log(1/4)

log(n + 1)
≤

0.32n + log(1/4)

log(n + 1)
, (5)

we have thatP (UM (π̂) ≥ 1 − 2ǫ) < 1/4. (The second equality above follows by taking
ǫ < 0.05, ensuring that no policy will be within0.1 of optimal.) Thus, under this condition,
by the standard probabilistic method argument[1], there must be at least one such MDP
under whichL fails to find anǫ-optimal policy.

For randomized algorithmsL, we can define for each string of input random numbers
to the algorithmω a deterministic algorithmLω. Givenm samples above, the expected
performance of algorithmLω over the distribution of MDPs

Ep(M)[L
ω] ≤ Pr(UM (Lω) ≥ 1 − 2ǫ)1 + (1 − Pr(UM (Lω) ≥ 1 − 2ǫ))(1 − 2ǫ)

<
1

4
+

3

4
(1 − 2ǫ) < 1 − ǫ

Since
Ep(M)Ep(ω)[UM (Lω)] = Ep(ω)Ep(M)[UM (Lω)] < Ep(ω)[1 − ǫ]

it follows again from the probabilistic method there must be at least one MDP for which
theL has expected performance less than1 − ǫ. �

4 Learning with local rewards
Assuming the existence of a good exploration policy, we now show a positive result that if
our learning algorithm has access to the local rewards, then it is possible to learn a near-
optimal policy after a number of trials that grows onlylogarithmically in the number of
agentsn. In this section, we will assume that the neighborhood structure (encoded by
neigh(i)) is known, but that the CPT parameters of the dynamics and the reward functions
are unknown. We also assume that the size of the largest neighborhood is bounded by
maxi |neigh(i)| = B.

Definition. A policy πexplore is a(ρ, ν)-exploration policy if, given anyi, any configuration
of statess(neigh(i)) ∈ S|neigh(i)|, and any actiona(i) ∈ A, on a trial of lengthT the policy
πexplore has at least a probabilityν · ρB of executing actiona(i) while i and its neighbors
are in states(neigh(i)).

Proposition 4.1: Suppose the MDP’s initial state distribution is random, so that the state
s
(i)
i of each agenti is chosen independently from some distributionDi. Further, assume

that Di assigns probability at leastρ > 0 to each possible state values ∈ S. Then
the “random” policy π (that on each time-step chooses each agent’s action uniformly at
random overA) is a (ρ, 1

|A|)-exploration policy.

Proof. For any agenti, the initial state ofs(neigh(i)) has has at least aρB chance of being
any particular vector of values, and the random action policy has a1/|A| chance of taking
any particular action from this state. �

In general, it is a fairly strong assumption to assume that we have an exploration policy.
However, this assumption serves to decouple the problem of exploration from the “sample
complexity” question of how much data we need from the MDP. Specifically, it guarantees
that we visit each local configuration sufficiently often to have a reasonable amount of data
to estimate each CPT.3

In the envisioned procedure, we will execute an exploration policy form trials, and
then use the resulting data we collect to obtain the maximum-likelihood estimates for the
CPT entries and the rewards. We call the resulting estimatesp̂(s

(i)
t+1|s

(neigh(i))
t , a

(i)
t) and

R̂(s(i), a(i)).4 The following simple lemma shows that, with a number of trials that grows
only logarithmically inn, this procedure will give us good estimates for all CPTs and local
rewards.

Lemma 4.2: Let anyǫ0 > 0, δ > 0 be fixed. Suppose|neigh(i)| ≤ B for all i, and let
a (ρ, ν)-exploration policy be executed form trials. Then in order to guarantee that, with
probability at least1 − δ, the CPT and reward estimates areǫ0-accurate:

|p̂(s
(i)
t+1|s

(neigh(i))
t , a

(i)
t) − p(s

(i)
t+1|s

(neigh(i))
t , a

(i)
t)| ≤ ǫ0 for all i, s(i)

t+1, s
(neigh(i))
t , a

(i)
t

|R̂(s(i), a(i))| − R(s(i), a(i))| ≤ ǫ0 for all i, s(i), a(i), (6)

it suffices that the number of trials be

m = O((log n) · poly(
1

ǫ0
,
1

δ
, |S|, |A|, 1/(νρB), B, T)).

Proof (Sketch). Given c examples to estimate a particular CPT entry (or a reward table
entry), the probability that this estimate differs from the true value by more thanǫ0 can be
controlled by the Hoeffding bound:

P (|p̂(s
(i)
t+1|s

(neigh(i))
t , a

(i)
t) − p(s

(i)
t+1|s

(neigh(i))
t , a

(i)
t)| ≥ ǫ0) ≤ 2 exp(−2ǫ20c).

Each CPT has at most|A||S|B+1 entries and there aren such tables. There are also
n|S||A| possible local reward values. Taking a union bound over them, setting our prob-
ability of incorrectly estimating any CPTs or rewards toδ/2, and solving forc gives

c ≥ 2
ǫ20

log(4 n |A||S|B+1

δ
). For each agenti we see each local configurations of states and

actions(s(neigh(i)), a(i)) with probability≥ ρBν. Form trajectories the expected number

3Further, it is possible to show a stronger version of our result than that stated below, showing that
a random action policy can always be used as our exploration policy, to obtain a sample complexity
bound with the same logarithmic dependence onn (but significantly worse dependencies onT and
B). This result uses ideas from the random trajectory method of[8], with the key observation that
local configurations that are not visited reasonably frequently by the random exploration policy will
not be visited frequently byany policy, and thus inaccuracies in our estimates of their CPT entries
will not significantly affect the result.

4We let p̂(s
(i)
t+1|s

(neigh(i))
t

, a
(i)
t

) be the uniform distribution if(s(neigh(i))
t

, a
(i)
t

) was never ob-

served in the training data, and similarly letR̂(s(i), a(i)) = 0 if R̂(s(i), a(i)) was never observed.

of samples we see for each CPT entry is at leastmρBν. CallS(s(neigh(i)),a(i))
m the number of

samples we’ve seen of a configuration(s(neigh(i)), a(i)) in m trajectories. Note then that:

P (S(s(neigh(i)),a(i))
m ≤ c) ≤ P (S(s(neigh(i)),a(i))

m − E[S(s(neigh(i)),a(i))
m] ≤ c − mρBν).

and another application of Hoeffding’s bound ensures that:

P (S(s(neigh(i)),a(i))
m − E[S(s(neigh(i)),a(i))

m] ≤ c − mρBν) ≤ exp(
−2

mT 2
(c − mρBν)2).

Applying again the union bound to ensure that the probability of failure here is≤ δ/2 and
solving form gives the result. �

Definition. Define theradius of influencer(t) aftert steps to be the maximum number of
nodes that are withint steps in the neighborhood graph of any single node.

Viewed differently,r(t) upper bounds the number of nodes in thet-th timeslice of the DBN
(as in Figure 1) which are decendants of any single node in the 1-st timeslice. In a DBN
as shown in Figure 1, we haver(t) = O(t). If the neighborhood graph is a 2-d lattice in
which each node has at most 4 neighbors, thenr(t) = O(t2). More generally, we might
expect to haver(t) = O(t2) for “most” planar neigborhood graphs. Note that, even in the
worst case, by our assumption of each node havingB neighbors, we still have the bound
r(t) ≤ Bt, which is a bound independent of the number of agentsn.

Theorem 4.3: Let anyǫ > 0, δ > 0 be fixed. Suppose|neigh(i)| ≤ B for all i, and let a
(ρ, ν)-exploration policy be executed form trials in the MDPM . LetM̂ be the maximum
likelihood MDP, estimated from data from thesem trials. LetΠ be a policy class, and let

π̂ = arg max
π∈Π

U
M̂

(π)

be the best policy in the class, as evaluated onM̂ . Then to ensure that, with probability
1 − δ, we have that̂π is near-optimal withinΠ, i.e., that

UM (π̂) ≥ max
π∈Π

UM (π) − ǫ,

it suffices that the number of trials be:

m = O((log n) · poly(1/ǫ, 1/δ, |S|, |A|, 1/(νρB)), B, T, r(T)).

Proof. Our approach is essentially constructive: we show that for any policy, finite-horizon
value-iteration using approximate CPTs and rewards in its backups will correctly estimate
the true value function for that policy withinǫ/2. For simplicity, we assume that the initial
state distribution is known (and thus the same inM̂ andM); the generalization offers no
difficulties. By lemma (4.2) withm samples we can know both CPTs and rewards with the
probability required within any requiredǫ0.

Note also that for any MDP with the given DBN or neighborhood graph structure (including
bothM andM̂) the value function for every policyπ and at each time-step has a property
of bounded variation:

|V̂t(s
(1), . . . s(n)) − V̂t(s

(1), . . . s(i−1), s
(i)
changed, s(i+1), . . . , s(n)| ≤

r(T)T

n

This follows since a change in state can effect at mostr(T) agents’ states, so the resulting
change in utility must be bounded byr(T)T/n.

To compute a bound on the error in our estimate of overall utility we compute a bound
on the error induced by a one-step Bellman backup||BV̂ − B̂V̂ ||∞. This quantity can
be bounded in turn by considering the sequence of partially correct backup operators
B̂0, . . . , B̂n whereB̂i is defined as the Bellman operator for policyπ using the exact tran-
sitions and rewards for agents1, 2, . . . , i, and the estimated transitions rewards/transitions

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of training examples

pe
rf

or
m

an
ce

200 agents, 20% noise is observed rewards

local learner
global learner

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

number of agents

nu
m

be
r

of
 s

am
pl

es
 n

ec
es

sa
ry

local learner
global learner

Figure 2:(Left) Scaling of performance as a function of the number of trajectories seen for a global
reward and local reward algorithms. (Right) Scaling of the number of samples necessary to achieve
near optimal reward as a function of the number of agents.

for agentsi+1, . . . , n. From this definition it is immediate that the total error is equivalent
to the telescoping sum:

||BV̂ − B̂V̂ ||∞ = ||B̂0V̂ − B̂1V̂ + B̂1V̂ − ... + B̂n−1V̂ − B̂nV̂ ||∞ (7)

That sum is upper-bounded by the sum of term-by-term errors
∑n−1

i=0 ||B̂iV̂ − B̂i+1V̂ ||∞.
We can show that each of the terms in the sum is less thanǫ0r(T)(T + 1)/n since the
Bellman operatorŝBiV̂ − B̂i+1V̂ differ in the immediate reward contribution of agent
i + 1 by≤ ǫ0 and differ in computing the expected value of the future value by

EQi+1
j=1 p(sj

t+1|st,π)
Q

n
j=i+2 p(sj

t+1|st,π)[
∑

si+1

∆p(si+1
t+1|st, π)V̂t+1(s)],

with ∆p(si+1
t+1|st, π) ≤ ǫ0 the difference in the CPTs between̂Bi and B̂i+1. By the

bounded variation argument this total is then less thanǫ0r(T)T |S|/n. It follows then
∑

i ||B̂iV̂ − B̂i+1V̂ ||∞ ≤ ǫ0 r(T) (T + 1)|S|. We now appeal to finite-horizon bounds
on the error induced by Bellman backups[11] to show that the||V̂ − V ||∞ ≤ T ||BV̂ −

B̂V̂ ||∞ ≤ T (T + 1) ǫ0 r(T)|S|. Taking the expectation of̂V with respect to the initial
state distributionD and settingm according to Lemma (4.2) withǫ0 = ǫ

2|S|r(T) T (T+1)

completes the proof. �

5 Demonstration
We first present an experimental domain that hews closely to the theory in Section (3) above
to demonstrate the importance of local rewards. In our simple problem there aren = 400
independent agents who each choose an action in{0, 1}. Each agent has a “correct” action
that earns it rewardRi = 1 with probability0.8, and reward0 with probability0.2. Equally,
if the agents chooses the wrong action, it earns rewardRi = 1 with probability0.2.

We compare two methods on this problem. Our firstglobal algorithm uses only the global
rewardsR and uses this to build a model of the local rewards, and finally solves the re-
sulting estimated MDP exactly. The local reward functions are learnt by a least-squares
procedure with basis functions for each agent. The second algorithm also learns a local
reward function, but does so taking advantage of the local rewards it observes as opposed
to only the global signal. Figure (2) demonstrates the advantages of learning using a global
reward signal.5 On the right in Figure (2), we compute the time required to achieve1

4 of
optimal reward for each algorithm, as a function of the number of agents.

In our next example, we consider a simple variant of the multi-agent SYSADMIN 6 prob-

5A gradient-based model-free approach using the global reward signal was also tried, but its
performance was significantly poorer than that of the two algorithms depicted in Figure (2, left).

6In SYSADMIN there is a network of computers that fail randomly. A computer is more likely to
fail if a neighboring computer (arranged in a ring topology) fails. The goal is to reboot machines in
such a fashion so a maximize the number of running computers.

lem [4]. Again, we consider two algorithms: a global REINFORCE [9] learner, and a RE-
INFORCE algorithm run using only local rewards, even through the local REINFORCEal-
gorithm run in this way is not guaranteed to converge to the globally optimal (cooperative)
solution. We note that the local algorithm learns much more quickly than using the global
reward. (Figure 3) The learning speed we observed for the global algorithm correlates well
with the observations in[5] that the number of samples needed scales roughly linearly in
the number of agents. The local algorithm continued to require essentially the same number
of examples for all sizes used (up to over 100 agents) in our experiments.

0 50 100 150 200 250 300 350 400 450 500
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Global
Local

0 50 100 150 200 250 300 350 400 450 500
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9
Global
Local

Figure 3:REINFORCEapplied to the multi-agent SYSADMIN problem.Local refers to REINFORCE
applied using only neighborhood (local) rewards whileglobalrefers to standard REINFORCE(applied
to the global reward signal). (Left) shows averaged reward performance as a function of number of
iterations for 10 agents. (Right) depicts the performance for 20 agents.

References
[1] N. Alon and J. Spencer.The Probabilistic Method. Wiley, 2000.

[2] C. Boutilier, T. Dean, and S. Hanks. Decision theoretic planning: Structural assumptions and
computational leverage.Journal of Artificial Intelligence Research, 1999.

[3] Y. Chang, T. Ho, and L. Kaelbling. All learning is local: Multi-agent learning in global reward
games. InAdvances in NIPS 14, 2004.

[4] C. Guestrin, D. Koller, and R. Parr. Multi-agent planning with factored MDPs. InNIPS-14,
2002.

[5] C. Guestrin, M. Lagoudakis, and R. Parr. Coordinated reinforcement learning. InICML, 2002.

[6] M. Kearns and D. Koller. Efficient reinforcement learning in factored mdps. InIJCAI 16, 1999.

[7] M. Kearns, M. Littman, and S. Singh. Graphical models for game theory. InUAI, 2001.

[8] M. Kearns, Y. Mansour, and A. Ng. Approximate planning in large POMDPs via reusable
trajectories.(extended version of paper in NIPS 12), 1999.

[9] L. Peshkin, K-E. Kim, N. Meleau, and L. Kaelbling. Learning to cooperate via policy search.
In UAI 16, 2000.

[10] J. Schneider, W. Wong, A. Moore, and M. Riedmiller. Distributed value functions. InICML,
1999.

[11] R. Williams and L. Baird. Tight performance bounds on greedy policies based on imperfect
value functions. Technical report, Northeastern University, 1993.

