Part of Advances in Neural Information Processing Systems 17 (NIPS 2004)
Françcois Rivest, Yoshua Bengio, John Kalaska
Successful application of reinforcement learning algorithms often involves considerable hand-crafting of the necessary non-linear features to reduce the complexity of the value functions and hence to promote convergence of the algorithm. In contrast, the human brain readily and autonomously finds the complex features when provided with sufficient training. Recent work in machine learning and neurophysiology has demonstrated the role of the basal ganglia and the frontal cortex in mammalian reinforcement learning. This paper develops and explores new learning algorithms that provides potential new approaches to the feature construction problem. The algorithms are compared and evaluated on the Acrobot task.
inspired by neurological evidence