Expectation Consistent Free Energies for Approximate Inference

Part of Advances in Neural Information Processing Systems 17 (NIPS 2004)

Bibtex Metadata Paper

Authors

Manfred Opper, Ole Winther

Abstract

We propose a novel a framework for deriving approximations for in- tractable probabilistic models. This framework is based on a free energy (negative log marginal likelihood) and can be seen as a generalization of adaptive TAP [1, 2, 3] and expectation propagation (EP) [4, 5]. The free energy is constructed from two approximating distributions which encode different aspects of the intractable model such a single node con- straints and couplings and are by construction consistent on a chosen set of moments. We test the framework on a difficult benchmark problem with binary variables on fully connected graphs and 2D grid graphs. We find good performance using sets of moments which either specify fac- torized nodes or a spanning tree on the nodes (structured approximation). Surprisingly, the Bethe approximation gives very inferior results even on grids.