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Abstract

We prove generalization error bounds for predicting entries in a partially
observed matrix by fitting the observed entries with a low-rank matrix. In
justifying the analysis approach we take to obtain the bounds, we present
an example of a class of functions of finite pseudodimension such that
the sums of functions from this class have unbounded pseudodimension.

1 Introduction

“Collaborative filtering” refers to the general task of providing users with information on
what items they might like, or dislike, based on their preferences so far and how they relate
to the preferences of other users. This approach contrasts with a more traditional feature-
based approach where predictions are made based on features of the items.

For feature-based approaches, we are accustomed to studying prediction methods in terms
of probabilistic post-hoc generalization error bounds. Such results provide us a (proba-
bilistic) bound on the performance of our predictor on future examples, in terms of its
performance on the training data. These bounds hold without any assumptions on the true
“model”, that is the true dependence of the labels on the features, other than the central
assumptions that the training examples are drawn i.i.d. from the distribution of interest.

In this paper we suggest studying the generalization ability of collaborative prediction
methods. By “collaborative prediction” we indicate that the objective is to be able to pre-
dict user preferences for items, that is, entries in some unknowntarget matrixY of user-
item “ratings”, based on observing a subsetYS of the entries in this matrix1. We present

1In other collaborative filtering tasks, the objective is to be able to provide each user with a few
items that overlap his top-rated items, while it is not important to be able to correctly predict the users
ratings for other items. Note that it is possible to derive generalization error bounds for this objective
based on bounds for the “prediction” objective.



arbitrary source distribution⇔ target matrixY
random training set ⇔ random setS of observed entries

hypothesis ⇔ predicted matrixX
training error ⇔ observed discrepancyDS(X;Y )

generalization error ⇔ true discrepancyD(X;Y )

Figure 1: Correspondence with post-hoc bounds on the generalization error for standard
feature-based prediction tasks

bounds on the true average overall errorD(X;Y ) = 1
nm

∑n
i=1

∑m
a=1 loss(Xia;Yia) of

the predictionsX in terms of the average error over the observed entriesDS(X;Y ) =
1
|S|
∑

ia∈S loss(Xia;Yia), without making any assumptions on the true nature of the pref-
erencesY . What we do assume is that the subsetS of entries that we observe is chosen
uniformly at random. This strong assumption parallels the i.i.d. source assumption for
feature-based prediction.

In particular, we present generalization error bounds on prediction using low-rank models.

Collaborative prediction using low-rank models is fairly straight forward. A low-rank ma-
trix X is sought that minimizes the average observed errorDS(X;Y ). Unobserved entries
in Y are then predicted according toX. The premise behind such a model is that there
are only a small number of factors influencing the preferences, and that a user’s preference
vector is determined by how each factor applies to that user. Different methods differ in
how they relate real-valued entries inX to preferences inY , and in the associated measure
of discrepancy. For example, entries inX can be seen as parameters for a probabilistic
models of the entries inY , either mean parameters [1] or natural parameters [2], and a
maximum likelihood criterion used. Or, other loss functions, such as squared error [3, 2],
or zero-one loss versus the signs of entries inX, can be minimized.

Prior Work Previous results bounding the error of collaborative prediction using a low-
rank matrix all assume the true target matrixY is well-approximated by a low-rank matrix.
This corresponds to a largeeigengapbetween the top few singular values ofY and the
remaining singular values. Azaret al [3] give asymptotic results on the convergence of
the predictions to the true preferences, assuming they have an eigengap. Drineaset al [4]
analyze the sample complexity needed to be able to predict a matrix with an eigengap, and
suggests strategies for actively querying entries in the target matrix. To our knowledge, this
is the first analysis of the generalization error of low-rank methods that do not make any
assumptions on the true target matrix.

Generalization error bounds (and related online learning bounds) were previously discussed
for collaborative prediction applications, but only when prediction was done for each user
separately, using a feature-based method, with the other user’s preferences as features [5,
6]. Although these address a collaborative prediction application, the learning setting is a
standard feature-based setting. These methods are also limited, in that learning must be
performed separately for each user.

Shaw-Tayloret al [7] discuss assumption-free post-hoc bounds on the residual errors of
low-rank approximation. These results apply to a different setting, where a subset of the
rows are fully observed, and bound a different quantity—the distance between rows and
the learnedsubspace, rather then the distance to predicted entries.

Organization In Section 2 we present a generalization error bound for zero-one loss,
based on a combinatorial result which we prove in Section 3. In Section 4 we generalize
the bound to arbitrary loss functions. Finally, in Section 5 we justify the combinatorial



approach taken, by considering an alternate approach (viewing rank-kmatrices as combi-
nation ofk rank-1matrices) and showing why it does not work.

2 Generalization Error Bound for Zero-One Error

We begin by considering binary labelsYia ∈ ± and a zero-one sign agreement loss:

loss±(Xia;Yia) = 1YiaXia≤0 (1)

Theorem 1. For anymatrix Y ∈ {±1}n×m, n, m > 2, δ > 0 and integerk, with proba-
bility at least1 − δ over choosing a subsetS of entries inY uniformly among all subsets
of |S| entries, the discrepancy with respect to the zero-one sign agreement loss satisfies2:

∀X,rank X<kD±(X;Y ) < D±S(X;Y ) +

√
k(n + m) log 16em

k − log δ

2|S|

To prove the theorem we employ standard arguments about the generalization error for
finite hypothesis classes with bounded cardinality.

First fix Y as well asX ∈ Rn×m. When an index pair(i, a) is chosen uniformly at random,
loss(Xia;Yia) is a Bernoulli random variable with probabilityD±(X;Y ) of being one.
If the entries ofS are chosen independently and uniformly,|S|D±S(X;Y ) is Binomially
distributed with mean|S|D±(X;Y ) and using Chernoff’s inequality:

Pr
S

(
D±(X;Y ) ≥ D±S(X;Y ) + ε

)
≤ e−2|S|ε2 (2)

The distribution ofS in Theorem 1 is slightly different, asS is chosen without repetitions.
The mean ofD±S(X;Y ) is the same, but it is more concentrated, and (2) still holds.

Now consider all rank-kmatrices. Noting that loss(Xia;Yia) depends only on thesign
of Xia, it is enough to consider the equivalence classes of matrices with the same sign
patterns. Letf(n, m, k) be the number of such equivalence classes, i.e. the number of
possible sign configurations ofn×m matrices of rank at mostk:

F (n, m, k) = {signX ∈ {−, 0,+}n×m|X ∈ Rn×m, rank X ≤ k}
f(n, m, k) = ]F (n, m, k)

where signX denotes the element-wise sign matrix(signX)ia =

{
1 If Xia > 0

0 If Xia = 0

−1 If Xia < 1

.

For all matrices in an equivalence class, the random variableD±S(X;Y ) is the same, and
taking a union bound of the eventsD±(X;Y ) ≥ D±S(X;Y )+ε for each of thesef(n, m, k)
random variables we have:

Pr
S

(
∃X,rank X≤kD±(X;Y ) ≥ D±S(X;Y ) +

√
log f(n, m, k)− log δ

2|S|

)
≤ δ (3)

by using (2) and settingε =
√

log f(n,m,k)−log δ
2|S| . The proof of Theorem 1 rests on bounding

f(n, m, k), which we will do in the next section.

Note that since the equivalence classes we defined do not depend on the sample set, no
symmetrization argument is necessary.

2All logarithms are base two



3 Sign Configurations of a Low-Rank Matrix

In this section, we bound the numberf(n, m, k) of sign configurations ofn × m rank-
k matrices over the reals. Such a bound was previously considered in the context of
unbounded error communication complexity. Alon, Frankl and Rödl [8] showed that
f(n, m, k) ≤ minh (8dnm/he)(n+m)k+h+m, and used counting arguments to establish
that some (in fact, most) binary matrices can only be realized by high-rank matrices, and
therefore correspond to functions with high unbounded error communication complexity.

Here, we follow a general course outlined by Alon [9] to obtain a simpler, and slightly
tighter, bound based on the following result due to Warren:

Let P1, . . . , Pr be real polynomials inq variables, and letC be the complement of the
variety defined byΠiPi, i.e. the set of points in which all them polynomials are non-zero:

C = {x ∈ Rq|∀iPi(x) 6= 0}
Theorem 2 (Warren [10]). If all r polynomials are of degree at mostd, then the number
of connected components ofC is at most:

c(C) ≤ 2(2d)q

q∑
i=0

2i

(
r

i

)
≤
(

4edr

q

)q

where the second inequality holds whenr > q > 2.

The signs of the polynomialsP1, . . . , Pr are fixed inside each connected component ofC.
And so,c(C) bounds the number of sign configurations ofP1, . . . , Pr thatdo not contain
zeros. To bound the overall number of sign configurations the polynomials are modified
slightly (see Appendix), yielding:
Corollary 3 ([9, Proposition 5.5]). The number of -/0/+ sign configurations ofr polyno-
mials, each of degree at mostd, overq variables, is at most(8edr/q)q (for r > q > 2).

In order to apply these bounds to low-rank matrices, recall that any matrixX of rank at
mostk can be written as a productX = UV ′ whereU ∈ Rn×k andV ∈ Rk×m. Consider
thek(n+m) entries ofU, V as variables, and thenm entries ofX as polynomials of degree
two over these variables:

Xia =
k∑

α=1

UiαVaα

Applying Corollary 3 we obtain:

Lemma 4. f(n, m, k) ≤
(

8e·2·nm
k(n+m)

)k(n+m)

≤ (16em/k)k(n+m)

Substituting this bound in (3) establishes Theorem 1. The upper bound onf(n, m, k) is
tight up to a multiplicative factor in the exponent:

Lemma 5. For m > k2, f(n, m, k) ≥ m
1
2 (k−1)n

Proof. Fix any matrixV ∈ Rm×k with rows in general position, and consider the number
f(n, V, k) of sign configurations of matricesUV ′, whereU varies over alln× k matrices.
Focusing only on+/− sign configurations (no zeros inUV ′), each row of signUV ′ is a
homogeneous linear classification of the rows ofV , i.e. of m vectors in general position

in Rk. There are exactly
(
2
∑k−1

i=0

(
m
i

))
possible homogeneous linear classifications ofm

vectors in general position inRk, and so these many options for each row of signUV ′. We
can therefore bound:

f(n, m, k) ≥ f(n, V, k) ≥

(
2

k−1∑
i=0

(
m
i

))n

≥
(

m
k−1

)n ≥ ( m
k−1

)n(k−1)

= m
1
2 (k−1)n



4 Generalization Error Bounds for Other Loss Functions

In Section 2 we considered generalization error bounds for a zero-one loss function. More
commonly, though, other loss functions are used, and it is desirable to obtain generalization
error bounds for general loss functions.

When dealing with other loss functions, the magnitude of the entries in the matrix are
important, and not only their signs. It is therefore no longer enough to bound the number
of sign configurations. Instead, we will bound not only the number of ways low rank
matrices behave with regards to a threshold of zero, but the number of possible ways low-
rank matrices can behave relative to any set of thresholds. That is, for any threshold matrix
T ∈ Rn×m, we will show that the number of possible sign configurations of(X − T ),
whereX is low-rank, is small. Intuitively, this captures the complexity of the class of
low-rank matrices not only around zero, but throughout all possible values.

We then use standard results from statistical machine learning to obtain generalization error
bounds from the bound on the number of relative sign configurations. The number of rela-
tive sign configurations serves as a bound on thepseudodimension—the maximum number
of entries for which there exists a set of thresholds such that all relative sign configurations
(limited to these entries) is possible. The pseudodimension can in turn be used to show the
existence of a smallε-net, which is used to obtain generalization error bounds.

Recall the definition of the pseudodimension of a class of real-valued functions:

Definition 1. A classF of real-valued functionspseudo-shattersthe pointsx1, . . . , xn

with thresholdst1, . . . , tn if for every binary labeling of the points(s1, . . . , sn) ∈ {+,−}n

there existsf ∈ F s.t. f(xi) ≤ ti iff si = −. Thepseudodimensionof a classF is the
supremum overn for which there existn points and thresholds that can be shattered.

In order to apply known results linking the pseudodimension to covering numbers, we
consider matricesX ∈ Rn×m as real-valued functionsX : [n] × [m] → R over index
pairs to entries in the matrix. The classXk of rank-kmatrices can now be seen as a class
of real-valued functions over the domain[n] × [m]. We bound the pseudodimension of
this class by bounding, for any threshold matrixT ∈ Rn×m the number ofrelative sign
matrices:

FT (n, m, k) = {sign(X − T ) ∈ {−, 0,+}n×m|X ∈ Rn×m, rank X ≤ k}
fT (n, m, k) = ]FT (n, m, k)

Lemma 6. For anyT ∈ Rn×m, we havefT (n, m, k) ≤
(

16em
k

)k(n+m)
.

Proof. We take a similar approach to that of Lemma 4, writing rank-kmatrices as a product
X = UV ′ whereU ∈ Rn×k andV ∈ Rk×m. Consider thek(n + m) entries ofU, V as
variables, and thenm entries ofX − T as polynomials of degree two over these variables:

(X − T )ia =
k∑

α=1

UiαVaα − Tia

Applying Corollary 10 yields the desired bound.

Corollary 7. The pseudodimension of the classXk of n × m matrices over the reals of
rank at mostk, is at mostk(n + m) log 16em

k .

We can now invoke standard generalization error bounds in terms of the pseudodimension
(Theorem 11 in the Appendix) to obtain:



Theorem 8. For any monotone loss function with|loss| ≤M , anymatrixY ∈ {±1}n×m,
n, m > 2, δ > 0 and integerk, with probability at least1− δ over choosing a subsetS of
entries inY uniformly among all subsets of|S| entries:

∀X,rank X<kD(X;Y ) < DS(X;Y ) + 6

√√√√k(n + m) log 16em
k log M |S|

k(n+m) − log δ

|S|

5 Low-Rank Matrices as Combined Classifiers

Rank-k matrices are those matrices which are a sum ofk rank-1 matrices. If we view
matrices as functions from pairs of indices to the reals, we can think of rank-k matrices as
“combined” classifiers, and attempt to bound their complexity as such, based on the low
complexity of the “basis” functions, i.e. rank-1matrices.

A similar approach is taken in related work on learning with low-norm (maximum margin)
matrix factorization [11, 12], where the hypothesis class can be viewed as a convex combi-
nation of rank-1unit-norm matrices. Scale-sensitive (i.e. dependent on the margin, or the
slope of the loss function) generalization error bounds for this class are developed based on
the graceful behavior of scale-sensitive complexity measures (e.g. log covering numbers
and the Rademacher complexity) with respect to convex combinations. Taking a similar
view, it is possible to obtain scale-sensitive generalization error bounds for low-rank ma-
trices. In this Section we question whether it is possible to obtain scale-insensitive bounds,
similar to Theorems 1 and 8, by viewing low-rank matrices as combined classifiers.

It cannot be expected that scale-insensitive complexity would be preserved when taking
convex combinations of an unbounded number of base functions. However, the VC-
dimension, a scale-insensitive measure of complexity, does scale gracefully when taking
linear combinations of a bounded number of functions from a low VC-dimension class of
indicator function. Using this, we can obtain generalization error bounds for linear com-
binations of signs of rank-one matrices, but not signs of linear combinations of rank-one
matrices. An alternate candidate scale-insensitive complexity measure is the pseudodi-
mension of a class of real-valued functions. If we could bound the pseudodimension of the
class of sums ofk functions from a bounded-pseudodimension base class of real valued
functions, we could avoid the sign-configuration counting and obtain generalization error
bounds for rank-kmatrices. Unfortunately, the following counterexample shows that this
is not possible.

Theorem 9. There exists a familyF closed under scalar multiplication whose pseudodi-
mension is at most five, and such that{f1 + f2|f1, f2 ∈ F} does not have a finite pseu-
dodimension.

Proof. We describe a classF of real-valued functions over the positive integersN. To do
so, consider a one-to-one mapping offinitesets of positive integers to the positive integers.
For eachA ∈ N define two functions3, fA(x) = 2xA + 1x∈A andgA(x) = 2xA. LetF be
the set of all scalar multiplications of these functions.

For everyA ⊂ N , fA − gA is the indicator function ofA, implying that every finite subset
can be shattered, and the pseudodimension of{f1 + f2 : f1, f2 ∈ F} is unbounded.

It remains to show that the pseudodimension ofF is less than six. To do so, we note that
there are no positive integersA < B andx < y and positive realsα, β > 0 such that
β(2xB + 1) > α2xA andβ2yB < α(2yA + 1). It follows that for anyA < B and any
α, β > 0, on an initial segment (possibly empty) ofN we haveβgB ≤ βfB ≤ αgA ≤ αfA

while on the rest ofN we haveαgA ≤ αfA < βgB ≤ βfB . In particular, any pair of

3We useA to refer both to a positive integer and the finite set it maps to.



functions(βfA, αfB) or (βfA, αgB) or (βgA, αgB) in F that are not associated with the
same subset (i.e.A 6= B), cross each other at most once. This holds also whenα or β are
negative, as the functions never change signs.

For any six naturalsx1 < x2 < · · · < x6 and six thresholds, consider the three labellings
(+,−,+,−,+,−), (−,+,−,+,−,+), (+,+,−,−,+,+). The three functions realizing
these labellings must cross each other at least twice, but by the above arguments, there are
no three functions inF such that every pair crosses each other at least twice.4

6 Discussion

Alon, Frankl and R̈odl [8] use a result of Milnor similar to Warren’s Theorem 2. Milnor’s
and Warren’s theorems were previously used for bounding the VC-dimension of certain
geometric classes [13], and of general concept classes parametrized by real numbers, in
terms of the complexity of the boolean formulas over polynomials used to represent them
[14]. This last general result can be used to bound the VC-dimension of signs ofn×m rank-
k matrices by2k(n+m) log(48enm), yielding a bound similar to Theorem 1 with an extra
log |S| term. In this paper, we take a simpler path, applying Warren’s theorem directly, and
thus avoiding thelog |S| term and reducing the other logarithmic term. Applying Warren’s
theorem directly also enables us to bound the pseudodimension and obtain the bound of
Theorem 8 for general loss functions.

Another notable application of Milnor’s result, which likely inspired these later uses, is for
bounding the number of configurations ofn points inRd with different possible linear clas-
sifications [15, 16]. Viewing signs of rank-k n×m matrices asn linear classification ofm
points inRk, this bound can be used to boundf(n, m, k) < 2km log 2n+k(k+1)n log n with-
out using Warren’s Theorem directly [8, 12]. The bound of Lemma 4 avoids the quadratic
dependence onk in the exponent.

Acknowledgments We would like to thank Peter Bartlett for pointing out [13, 14]. N.S. and
T.J. would like to thank Erik Demaine for introducing them to oriented matroids.

A Proof of Corollary 3

Consider a setR ⊂ Rq containing one variable configuration for each possible sign pattern. Set
ε

.
= 1

2
min1≤i≤q,x∈RPi(x)6=0 |Pi(x)| > 0. Now consider the2q polynomialsP+

i (x) = Pi(x) + ε

andP−
i (x) = Pi(x) − ε andC′ =

{
x ∈ Rq|∀iP

+
i (x) 6= 0, P−

i (x) 6= 0
}

. Different points inR

(representing all sign configurations) lie in different connected components ofC′. Invoking Theorem
2 onC′ establishes Corollary 3.

The count in Corollary 3 differentiates between positive, negative and zero signs. However, we are
only concerned with the positivity ofYiaXia (in the proof of Theorem 1) or ofXia − Tia (in the
proof of Theorem 8), and do not need to differentiate between zero and negative values. Invoking
Theorem 2 onC+ =

{
x ∈ Rq|∀iP

+
i (x) 6= 0

}
, yields:

Corollary 10. The number of -/+ sign configurations (where zero is considered negative) ofr poly-
nomials, each of degree at mostd, overq variables, is at most(4edr/q)q (for r > q > 2).

Applying Corollary 10 on thenm degree-two polynomialsYia

∑k
α=1 UiαVaα establishes that for

anyY , the number of configurations of sign agreements of rank-kmatrices withY is bounded by
(8em/k)k(n+m) and yields a constant of 8 instead of 16 inside the logarithm in Theorem 1. Applying
Corollary 10 instead of Corollary 3 allows us to similarly tighten in the bounds in Corollary 7 and in
Theorem 8.

4A more careful analysis shows thatF has pseudodimension three.



B Generalization Error Bound in terms of the Pseudodimension

Theorem 11. LetF be a class of real-valued functionsf : X → R with pseudodimensiond, and
loss : R × Y → R be a bounded monotone loss function (i.e. for ally, loss(x, y) is mono-
tone in x), with loss < M . For any joint distribution over(X, Y ), consider an i.i.d. sample
S = (X1, Y1), . . . , (Xn, Yn). Then for anyε > 0:

Pr
S

(
∃f∈FEX,Y [loss(f(X), Y )] >

1

n

n∑
i=1

loss(f(Xi), Yi) + ε

)
< 4e(d + 1)

(
32eM

ε

)d

e−
ε2n
32

The bound is a composition of a generalization error bound in terms of theL1 covering number [17,
Theorem 17.1], a bound on theL1 covering number in terms of the pseudodimension [18] and the
observation that composition with a monotone function does not increase the pseudodimension [17,
Theorem 12.3].
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