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Abstract

The equivalent kernel [1] is a way of understanding how Gaussian pro-
cess regression works for large sample sizes based on a continuum limit.
In this paper we show (1) how to approximate the equivalent kernel of the
widely-used squared exponential (or Gaussian) kernel and related ker-
nels, and (2) how analysis using the equivalent kernel helps to understand
the learning curves for Gaussian processes.

Consider the supervised regression problem for a dataset D with entries (xi, yi) for i =
1, . . . , n. Under Gaussian Process (GP) assumptions the predictive mean at a test point x∗

is given by

f̄(x∗) = k>(x∗)(K + σ2I)−1y, (1)

where K denotes the n × n matrix of covariances between the training points with entries
k(xi,xj), k(x∗) is the vector of covariances k(xi,x∗), σ2 is the noise variance on the
observations and y is a n × 1 vector holding the training targets. See e.g. [2] for further
details.

We can define a vector of functions h(x∗) = (K + σ2I)−1k(x∗) . Thus we have f̄(x∗) =
h>(x∗)y, making it clear that the mean prediction at a point x∗ is a linear combination of
the target values y. Gaussian process regression is thus a linear smoother, see [3, section
2.8] for further details. For a fixed test point x∗, h(x∗) gives the vector of weights applied
to targets y. Silverman [1] called h>(x∗) the weight function.

Understanding the form of the weight function is made complicated by the matrix inversion
of K + σ2I and the fact that K depends on the specific locations of the n datapoints.
Idealizing the situation one can consider the observations to be “smeared out” in x-space
at some constant density of observations. In this case analytic tools can be brought to bear
on the problem, as shown below. By analogy to kernel smoothing Silverman [1] called the
idealized weight function the equivalent kernel (EK).

The structure of the remainder of the paper is as follows: In section 1 we describe how
to derive the equivalent kernel in Fourier space. Section 2 derives approximations for the
EK for the squared exponential and other kernels. In section 3 we show how use the EK
approach to estimate learning curves for GP regression, and compare GP regression to
kernel regression using the EK.



1 Gaussian Process Regression and the Equivalent Kernel

It is well known (see e.g. [4]) that the posterior mean for GP regression can be obtained as
the function which minimizes the functional

J [f ] =
1

2
‖f‖2

H +
1

2σ2
n

n
∑

i=1

(yi − f(xi))
2, (2)

where ‖f‖H is the RKHS norm corresponding to kernel k. (However, note that the GP
framework gives much more than just this mean prediction, for example the predictive
variance and the marginal likelihood p(y) of the data under the model.)

Let η(x) = E[y|x] be the target function for our regression problem and write E[(y −
f(x))2] = E[(y − η(x))2] + (η(x)− f(x))2. Using the fact that the first term on the RHS
is independent of f motivates considering a smoothed version of equation 2,

Jρ[f ] =
ρ

2σ2

∫

(η(x) − f(x))2dx +
1

2
‖f‖2

H,

where ρ has dimensions of the number of observations per unit of x-space
(length/area/volume etc. as appropriate). If we consider kernels that are stationary,
k(x,x′) = k(x − x′), the natural basis in which to analyse equation 1 is the Fourier
basis of complex sinusoids so that f(x) is represented as

∫

f̃(s)e2πis·xds and similarly for
η(x). Thus we obtain

Jρ[f ] =
1

2

∫

(

ρ

σ2
|f̃(s) − η̃(s)|2 +

|f̃(s)|2

S(s)

)

ds,

as ‖f‖2
H =

∫

|f̃(s)|2/S(s)ds where S(s) is the power spectrum of the kernel k,
S(s) =

∫

k(x)e−2πis·xdx. Jρ[f ] can be minimized using calculus of variations to ob-
tain f̃(s) = S(s)η(s)/(σ2/ρ + S(s)) which is recognized as the convolution f(x∗) =
∫

h(x∗ − x)η(x)dx. Here the Fourier transform of the equivalent kernel h(x) is

h̃(s) =
S(s)

S(s) + σ2/ρ
=

1

1 + σ2/(ρS(s))
. (3)

The term σ2/ρ in the first expression for h̃(s) corresponds to the power spectrum of a
white noise process, whose delta-function covariance function becomes a constant in the
Fourier domain. This analysis is known as Wiener filtering; see, e.g. [5, §14-1]. Notice
that as ρ → ∞, h(x) tends to the delta function. If the input density is non-uniform the
analysis above should be interpreted as computing the equivalent kernel for np(x) = ρ.
This approximation will be valid if the scale of variation of p(x) is larger than the width of
the equivalent kernel.

2 The EK for the Squared Exponential and Related Kernels

For certain kernels/covariance functions the EK h(x) can be computed exactly by Fourier
inversion. Examples include the Ornstein-Uhlenbeck process in D = 1 with covariance
k(x) = e−α|x| (see [5, p. 326]), splines in D = 1 corresponding to the regularizer
‖Pf‖2 =

∫

(f (m))2dx [1, 6], and the regularizer ‖Pf‖2 =
∫

(∇2f)2dx in two dimen-
sions, where the EK is given in terms of the Kelvin function kei [7].

We now consider the commonly used squared exponential (SE) kernel k(r) =
exp(−r2/2`2), where r2 = ||x−x′||2. (This is sometimes called the Gaussian or radial ba-
sis function kernel.) Its Fourier transform is given by S(s) = (2π`2)D/2 exp(−2π2`2|s|2),
where D denotes the dimensionality of x (and s) space.



From equation 3 we obtain

h̃SE(s) =
1

1 + b exp(2π2`2|s|2)
,

where b = σ2/ρ(2π`2)D/2. We are unaware of an exact result in this case, but the following
initial approximation is simple but effective. For large ρ, b will be small. Thus for small
s = |s| we have that h̃SE ' 1, but for large s it is approximately 0. The change takes
place around the point sc where b exp(2π2`2s2

c) = 1, i.e. s2
c = log(1/b)/2π2`2. As

exp(2π2`2s2) grows quickly with s, the transition of h̃SE between 1 and 0 can be expected
to be rapid, and thus be well-approximated by a step function.

Proposition 1 The approximate form of the equivalent kernel for the squared-exponential
kernel in D-dimensions is given by

hSE(r) =
(sc

r

)D/2

JD/2(2πscr).

Proof: hSE(s) is a function of s = |s| only, and for D > 1 the Fourier integral can
be simplified by changing to spherical polar coordinates and integrating out the angular
variables to give

hSE(r) = 2πr

∫ ∞

0

(s

r

)ν+1

Jν(2πrs)h̃SE(s) ds (4)

' 2πr

∫ sc

0

(s

r

)ν+1

Jν(2πrs) ds =
(sc

r

)D/2

JD/2(2πscr).

where ν = D/2 − 1, Jν(z) is a Bessel function of the first kind and we have used the
identity zν+1Jν(z) = (d/dz)[zν+1Jν+1(z)]. �

Note that in D = 1 by computing the Fourier transform of the boxcar function we obtain
hSE(x) = 2scsinc(2πscx) where sinc(z) = sin(z)/z. This is consistent with Proposition
1 and J1/2(z) = (2/πz)1/2 sin(z). The asymptotic form of the EK in D = 2 is shown in
Figure 2(left) below.

Notice that sc scales as (log(ρ))1/2 so that the width of the EK (which is proportional to
1/sc) will decay very slowly as ρ increases. In contrast for a spline of order m (with power
spectrum ∝ |s|−2m) the width of the EK scales as ρ−1/2m [1].

If instead of R
D we consider the input set to be the unit circle, a stationary kernel can

be periodized by the construction kp(x, x′) =
∑

n∈Z
k(x − x′ + 2nπ). This kernel will

be represented as a Fourier series (rather than with a Fourier transform) because of the
periodicity. In this case the step function in Fourier space approximation would give rise
to a Dirichlet kernel as the EK (see [8, section 4.4.3] for further details on the Dirichlet
kernel).

We now show that the result of Proposition 1 is asymptotically exact for ρ → ∞, and calcu-
late the leading corrections for finite ρ. The scaling of the width of the EK as 1/sc suggests
writing hSE(r) = (2πsc)

Dg(2πscr). Then from equation 4 and using the definition of sc

g(z) =
z

sc(2πsc)D

∫ ∞

0

(

2πscs

z

)ν+1
Jν(zs/sc)

1 + exp[2π2`2(s2 − s2
c)]

ds

= z

∫ ∞

0

( u

2πz

)ν+1 Jν(zu)

1 + exp[2π2`2s2
c(u

2 − 1)]
du (5)

where we have rescaled s = scu in the second step. The value of sc, and hence ρ, now
enters only in the exponential via a = 2π2`2s2

c . For a → ∞, the exponential tends to zero



for u < 1 and to infinity for u > 1. The factor 1/[1 + exp(. . .)] is therefore a step function
Θ(1 − u) in the limit and Proposition 1 becomes exact, with g∞(z) ≡ lima→∞ g(z) =
(2πz)−D/2JD/2(z). To calculate corrections to this, one uses that for large but finite a the
difference ∆(u) = {1 + exp[a(u2 − 1)]}−1 − Θ(1 − u) is non-negligible only in a range
of order 1/a around u = 1. The other factors in the integrand of equation 5 can thus be
Taylor-expanded around that point to give

g(z) = g∞(z) + z

∞
∑

k=0

Ik

k!

dk

duk

[

( u

2πz

)ν+1

Jν(zu)

]
∣

∣

∣

∣

u=1

, Ik =

∫ ∞

0

∆(u)(u − 1)k du

The problem is thus reduced to calculating the integrals Ik. Setting u = 1 + v/a one has

ak+1Ik =

∫ 0

−a

[

1

1 + exp(v2/a + 2v)
− 1

]

vk dv +

∫ ∞

0

vk

1 + exp(v2/a + 2v)
dv

=

∫ a

0

(−1)k+1vk

1 + exp(−v2/a + 2v)
dv +

∫ ∞

0

vk

1 + exp(v2/a + 2v)
dv

In the first integral, extending the upper limit to ∞ gives an error that is exponentially
small in a. Expanding the remaining 1/a-dependence of the integrand one then gets, to
leading order in 1/a, I0 = c0/a

2, I1 = c1/a
2 while all Ik with k ≥ 2 are smaller by

at least 1/a2. The numerical constants are −c0 = c1 = π2/24. This gives, using that
(d/dz)[zν+1Jν(z)] = zνJν(z) + zν+1Jν−1(z) = (2ν + 1)zνJν(z) − zν+1Jν+1(z):

Proposition 2 The equivalent kernel for the squared-exponential kernel is given for large
ρ by hSE(r) = (2πsc)

Dg(2πscr) with

g(z) =
1

(2πz)
D

2

{

JD/2(z) +
z

a2

[

(c0 + c1(D − 1))JD/2−1(z) − c1zJD/2(z)
]

}

+O(
1

a4
)

For e.g. D = 1 this becomes g(z) = π−1{sin(z)/z−π2/(24a2)[cos(z)+z sin(z)]}. Here
and in general, by comparing the second part of the 1/a2 correction with the leading order
term, one estimates that the correction is of relative size z2/a2. It will therefore provide
a useful improvement as long as z = 2πscr < a; for larger z the expansion in powers of
1/a becomes a poor approximation because the correction terms (of all orders in 1/a) are
comparable to the leading order.

2.1 Accuracy of the approximation

To evaluate the accuracy of the approximation we can compute the EK numerically as
follows: Consider a dense grid of points in R

D with a sampling density ρgrid. For making
predictions at the grid points we obtain the smoother matrix K(K + σ2

gridI)−1, where1

σ2
grid = σ2ρgrid/ρ, as per equation 1. Each row of this matrix is an approximation to the

EK at the appropriate location, as this is the response to a y vector which is zero at all points
except one. Note that in theory one should use a grid over the whole of R

D but in practice
one can obtain an excellent approximation to the EK by only considering a grid around the
point of interest as the EK typically decays with distance. Also, by only considering a finite
grid one can understand how the EK is affected by edge effects.

1To understand this scaling of σ2
grid consider the case where ρgrid > ρ which means that the

effective variance at each of the ρgrid points per unit x-space is larger, but as there are correspondingly
more points this effect cancels out. This can be understood by imagining the situation where there
are ρgrid/ρ independent Gaussian observations with variance σ2

grid at a single x-point; this would
be equivalent to one Gaussian observation with variance σ2. In effect the ρ observations per unit
x-space have been smoothed out uniformly.
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Figure 1: Main figure: plot of the weight function corresponding to ρ = 100 training
points/unit length, plus the numerically computed equivalent kernel at x = 0.0 and the sinc
approximation from Proposition 1. Insets: numerically evaluated g(z) together with sinc
and Proposition 2 approximations for ρ = 100 (left) and ρ = 104 (right).

Figure 1 shows plots of the weight function for ρ = 100, the EK computed on the grid as
described above and the analytical sinc approximation. These are computed for parameter
values of `2 = 0.004 and σ2 = 0.1, with ρgrid/ρ = 5/3. To reduce edge effects, the
interval [−3/2, 3/2] was used for computations, although only the centre of this is shown
in the figure. There is quite good agreement between the numerical computation and the
analytical approximation, although the sidelobes decay more rapidly for the numerically
computed EK. This is not surprising because the absence of a truly hard cutoff in Fourier
space means one should expect less “ringing” than the analytical approximation predicts.
The figure also shows good agreement between the weight function (based on the finite
sample) and the numerically computed EK. The insets show the approximation of Proposi-
tion 2 to g(z) for ρ = 100 (a = 5.67, left) and ρ = 104 (a = 9.67, right). As expected, the
addition of the 1/a2-correction gives better agreement with the numerical result for z < a.
Numerical experiments also show that the mean squared error between the numerically
computed EK and the sinc approximation decreases like 1/ log(ρ). The is larger than the
naı̈ve estimate (1/a2)2 ∼ 1/(log(ρ))4 based on the first correction term from Proposition
2, because the dominant part of the error comes from the region z > a where the 1/a
expansion breaks down.

2.2 Other kernels

Our analysis is not in fact restricted to the SE kernel. Consider an isotropic kernel, for
which the power spectrum S(s) depends on s = |s| only. Then we can again define from
equation 3 an effective cutoff sc on the range of s in the EK via σ2/ρ = S(sc), so that
h̃(s) = [1 + S(sc)/S(s)]−1. The EK will then have the limiting form given in Proposi-
tion 1 if h̃(s) approaches a step function Θ(sc − s), i.e. if it becomes infinitely “steep”
around the point s = sc for sc → ∞. A quantitative criterion for this is that the slope



|h̃′(sc)| should become much larger than 1/sc, the inverse of the range of the step func-
tion. Since h̃′(s) = S′(s)S(sc)S

−2(s)[1 + S(sc)/S(s)]−2, this is equivalent to requiring
that −scS

′(sc)/4S(sc) ∝ −d log S(sc)/d log sc must diverge for sc → ∞. The result
of Proposition 1 therefore applies to any kernel whose power spectrum S(s) decays more
rapidly than any positive power of 1/s.

A trivial example of a kernel obeying this condition would be a superposition of finitely
many SE kernels with different lengthscales `2; the asymptotic behaviour of sc is then
governed by the smallest `. A less obvious case is the “rational quadratic” k(r) =
[1 + (r/l)2]−(D+1)/2 which has an exponentially decaying power spectrum S(s) ∝
exp(−2π`s). (This relationship is often used in the reverse direction, to obtain the power
spectrum of the Ornstein-Uhlenbeck (OU) kernel exp(−r/`).) Proposition 1 then applies,
with the width of the EK now scaling as 1/sc ∝ 1/ log(ρ).

The previous example is a special case of kernels which can be written as superpositions
of SE kernels with a distribution p(`) of lengthscales `, k(r) =

∫

exp(−r2/2`2)p(`) d`.
This is in fact the most general representation for an isotropic kernel which defines a valid
covariance function in any dimension D, see [9, §2.10]. Such a kernel has power spectrum

S(s) = (2π)D/2

∫ ∞

0

`D exp(−2π2`2s2)p(`) d` (6)

and one easily verifies that the rational quadratic kernel, which has S(s) ∝ exp(−2π`0s),
is obtained for p(`) ∝ `−D−2 exp(−`20/2`

2). More generally, because the exponential

factor in equation 6 acts like a cutoff for ` > 1/s, one estimates S(s) ∼
∫ 1/s

0
`Dp(`) d`

for large s. This will decay more strongly than any power of 1/s for s → ∞ if p(`) itself
decreases more strongly than any power of ` for ` → 0. Any such choice of p(`) will
therefore yield a kernel to which Proposition 1 applies.

3 Understanding GP Learning Using the Equivalent Kernel

We now turn to using EK analysis to get a handle on average case learning curves for Gaus-
sian processes. Here the setup is that a function η is drawn from a Gaussian process, and we
obtain ρ noisy observations of η per unit x-space at random x locations. We are concerned
with the mean squared error (MSE) between the GP prediction f and η. Averaging over
the noise process, the x-locations of the training data and the prior over η we obtain the
average MSE ε as a function of ρ. See e.g. [10] and [11] for an overview of earlier work on
GP learning curves.

To understand the asymptotic behaviour of ε for large ρ, we now approximate the true
GP predictions with the EK predictions from noisy data, given by fEK(x) =

∫

h(x −
x′)y(x′)dx′ in the continuum limit of “smoothed out” input locations. We assume as before
that y = target + noise, i.e. y(x) = η(x) + ν(x) where E[ν(x)ν(x′)] = (σ2

∗/ρ)δ(x − x′).
Here σ2

∗ denotes the true noise variance, as opposed to the noise variance assumed in the
EK; the scaling of σ2

∗ with ρ is explained in footnote 1. For a fixed target η, the MSE
is ε = (

∫

dx)−1
∫

[η(x) − fEK(x)]2dx. Averaging over the noise process ν and target
function η gives in Fourier space

ε =

∫

{

Sη(s)[1 − h̃(s)]2 + (σ2
∗/ρ)h̃2(s)

}

ds =
σ2

ρ

∫

(σ2/ρ)Sη(s)/S2(s) + σ2
∗/σ

2

[1 + σ2/(ρS(s))]2
ds

(7)
where Sη(s) is the power spectrum of the prior over target functions. In the case S(s) =
Sη(s) and σ2 = σ2

∗ where the kernel is exactly matched to the structure of the target,
equation 7 gives the Bayes error εB and simplifies to εB = (σ2/ρ)

∫

[1 + σ2/(ρS(s))]−1ds
(see also [5, eq. 14-16]). Interestingly, this is just the analogue (for a continuous power
spectrum of the kernel rather than a discrete set of eigenvalues) of the lower bound of [10]
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Figure 2: Left: plot of the asymptotic form of the EK (sc/r)J1(2πscr) for D = 2 and
ρ = 1225. Right: log-log plot of ε against log(ρ) for the OU and Matern-class processes
(α = 2, 4 respectively). The dashed lines have gradients of −1/2 and −3/2 which are the
predicted rates.

on the MSE of standard GP prediction from finite datasets. In experiments this bound
provides a good approximation to the actual average MSE for large dataset size n [11].
This supports our approach of using the EK to understand the learning behaviour of GP
regression.

Treating the denominator in the expression for εB again as a hard cutoff at s = sc, which is
justified for large ρ, one obtains for an SE target and learner ε ≈ σ2sc/ρ ∝ (log(ρ))D/2/ρ.
To get analogous predictions for the mismatched case, one can write equation 7 as

ε =
σ2
∗

ρ

∫

[1 + σ2/(ρS(s))] − σ2/(ρS(s))

[1 + σ2/(ρS(s))]2
ds +

∫

Sη(s)

[S(s)ρ/σ2 + 1]2
ds.

The first integral is smaller than (σ2
∗/σ

2)εB and can be neglected as long as ε � εB. In the
second integral we can again make the cutoff approximation—though now with s having
to be above sc – to get the scaling ε ∝

∫∞

sc

sD−1Sη(s) ds. For target functions with a

power-law decay Sη(s) ∝ s−α of the power spectrum at large s this predicts ε ∝ sD−α
c ∝

(log(ρ))(D−α)/2. So we generically get slow logarithmic learning, consistent with the
observations in [12]. For D = 1 and an OU target (α = 2) we obtain ε ∼ (log(ρ))−1/2, and
for the Matern-class covariance function k(r) = (1 + r/`) exp(−r/`) (which has power
spectrum ∝ (3/`2 + 4π2s2)−2, so α = 4) we get ε ∼ (log(ρ))−3/2. These predictions
were tested experimentally using a GP learner with SE covariance function (` = 0.1 and
assumed noise level σ2 = 0.1) against targets from the OU and Matern-class priors (with
` = 0.05) and with noise level σ2

∗ = 0.01, averaging over 100 replications for each value
of ρ. To demonstrate the predicted power-law dependence of ε on log(ρ), in Figure 2(right)
we make a log-log plot of ε against log(ρ). The dashed lines show the gradients of −1/2
and −3/2 and we observe good agreement between experimental and theoretical results
for large ρ.

3.1 Using the Equivalent Kernel in Kernel Regression

Above we have used the EK to understand how standard GP regression works. One could
alternatively envisage using the EK to perform kernel regression, on given finite data sets,
producing a prediction ρ−1

∑

i h(x∗ − xi)yi at x∗. Intuitively this seems appealing as a
cheap alternative to full GP regression, particularly for kernels such as the SE where the
EK can be calculated analytically, at least to a good approximation. We now analyze briefly
how such an EK predictor would perform compared to standard GP prediction.



Letting 〈·〉 denote averaging over noise, training input points and the test point and setting
fη(x∗) =

∫

h(x,x∗)η(x)dx, the average MSE of the EK predictor is

εpred = 〈[η(x) − (1/ρ)
∑

i h(x,xi)yi]
2〉

= 〈[η(x) − fη(x)]2 +
σ2

∗

ρ

∫

h2(x,x′)dx′〉 + 1
ρ 〈
∫

h2(x,x′)η2(x′)dx′〉 − 1
ρ 〈f

2
η (x)〉

=
σ2

ρ

∫

(σ2/ρ)Sη(s)/S2(s) + σ2
∗/σ

2

[1 + σ2/(ρS(s))]2
ds +

〈η2〉

ρ

∫

ds

[1 + σ2/(ρS(s))]2

Here we have set 〈η2〉 = (
∫

dx)−1
∫

η2(x) dx =
∫

Sη(s) ds for the spatial average of the
squared target amplitude. Taking the matched case, (Sη(s) = S(s) and σ2

∗ = σ2) as an
example, the first term (which is the one we get for the prediction from “smoothed out”
training inputs, see eq. 7) is of order σ2sD

c /ρ, while the second one is ∼ 〈η2〉sD
c /ρ. Thus

both terms scale in the same way, but the ratio of the second term to the first is the signal-
to-noise ratio 〈η2〉/σ2, which in practice is often large. The EK predictor will then perform
significantly worse than standard GP prediction, by a roughly constant factor, and we have
confirmed this prediction numerically. This result is somewhat surprising given the good
agreement between the weight function h(x∗) and the EK that we saw in figure 1, leading
to the conclusion that the detailed structure of the weight function is important for optimal
prediction from finite data sets.

In summary, we have derived accurate approximations for the equivalent kernel (EK) of
GP regression with the widely used squared exponential kernel, and have shown that the
same analysis in fact extends to a whole class of kernels. We have also demonstrated that
EKs provide a simple means of understanding the learning behaviour of GP regression,
even in cases where the learner’s covariance function is not well matched to the structure
of the target function. In future work, it will be interesting to explore in more detail the use
of the EK in kernel smoothing. This is suboptimal compared to standard GP regression as
we saw. However, it does remain feasible even for very large datasets, and may then be
competitive with sparse methods for approximating GP regression. From the theoretical
point of view, the average error of the EK predictor which we calculated may also provide
the basis for useful upper bounds on GP learning curves.

Acknowledgments: This work was supported in part by the IST Programme of the Eu-
ropean Community, under the PASCAL Network of Excellence, IST-2002-506778. This
publication only reflects the authors’ views.

References
[1] B. W. Silverman. Annals of Statistics, 12:898–916, 1984.

[2] C. K. I. Williams. In M. I. Jordan, editor, Learning in Graphical Models, pages 599–621.
Kluwer Academic, 1998.

[3] T. J. Hastie and R. J. Tibshirani. Generalized Additive Models. Chapman and Hall, 1990.

[4] F. Girosi, M. Jones, and T. Poggio. Neural Computation, 7(2):219–269, 1995.

[5] A. Papoulis. Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New
York, 1991. Third Edition.

[6] C. Thomas-Agnan. Numerical Algorithms, 13:21–32, 1996.

[7] T. Poggio, H. Voorhees, and A. Yuille. Tech. Report AI Memo 833, MIT AI Laboratory, 1985.

[8] B. Schölkopf and A. Smola. Learning with Kernels. MIT Press, 2002.

[9] M. L. Stein. Interpolation of Spatial Data. Springer-Verlag, New York, 1999.

[10] M. Opper and F. Vivarelli. In NIPS 11, pages 302–308, 1999.

[11] P. Sollich and A. Halees. Neural Computation, 14:1393–1428, 2002.

[12] P. Sollich. In NIPS 14, pages 519–526, 2002.


