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Abstract

Given a directed graph in which some of the nodes are labeled, we inves-
tigate the question of how to exploit the link structure of the graph to infer
the labels of the remaining unlabeled nodes. To that extent we propose a
regularization framework for functions defined over nodes of a directed
graph that forces the classification function to change slowly on densely
linked subgraphs. A powerful, yet computationally simple classification
algorithm is derived within the proposed framework. The experimental
evaluation on real-world Web classification problems demonstrates en-
couraging results that validate our approach.

1 Introduction

We consider semi-supervised classification problems on weighted directed graphs, in which
some nodes in the graph are labeled as positive or negative, and where the task consists in
classifying unlabeled nodes. Typical examples of this kind are Web page categorization
based on hyperlink structure [4, 11] and document classification or recommendation based
on citation graphs [10], yet similar problems exist in other domains such as computational
biology. For the sake of concreteness, we will mainly focus on the Web graph in the sequel,
i.e. the considered graph represents a subgraph of the Web, where nodes correspond to Web
pages and directed edges represent hyperlinks between them (cf. [3]).

We refrain from utilizing attributes or features associated with each node, which may or
may not be available in applications, but rather focus on the analysis of the connectivity of
the graph as a means for classifying unlabeled nodes. Such an approach inevitably needs
to make some a priori premise about how connectivity and categorization of individual
nodes may be related in real-world graphs. The fundamental assumption of our framework
is the category similarity of co-linked nodes in a directed graph. This is a slightly more
complex concept than in the case of undirected (weighted) graphs [1, 18, 12, 15, 17], where
a typical assumption is that an edge connecting two nodes will more or less increase the
likelihood of the nodes belonging to the same category. Co-linkage on the other hand
seems a more suitable and promising concept in directed graphs, as is witnessed by its
successful use in Web page categorization [4] as well as co-citation analysis for information
retrieval [10]. Notice that co-linkage comes in two flavors: sibling structures, i.e. nodes



with common parents, and co-parent structures, i.e. nodes with common children. In most
Web and citation graph related application, the first assumption, namely that nodes with
highly overlapping parent sets are likely to belong to the same category, seems to be more
relevant (cf. [4]), but in general this will depend on the specific application.

One possible way of designing classifiers based on graph connectivity is to construct a
kernel matrix based on pairwise links [11] and then to adopt a standard kernel method,
e.g. Support Vector Machines (SVMs) [16] as a learning algorithm. However, a kernel
matrix as the one proposed in [11] only represents local relationships among nodes, but
completely ignores the global structure of the graph. The idea of exploiting global rather
than local graph structure is widely used in other Web-related techniques, including Web
page ranking [2, 13], finding similar Web pages [7], detecting Web communities [13, 9]
and so on. The major innovation of this paper is a general regularization framework on
directed graphs, in which the directionality and global relationships are considered, and
a computationally attractive classification algorithm, which is derived from the proposed
regularization framework.

2 Regularization Framework

2.1 Preliminaries

A directed graph Γ = (V,E) consists of a set of vertices, denoted by V and a set of edges,
denoted by E ⊆ V × V . Each edge is an ordered pair of nodes [u, v] representing a
directed connection from u to v. We do not allow self loops, i.e. [v, v] 6∈ E for all v ∈ V .
In a weighted directed graph, a weight function w : V × V → R+ is associated with Γ,
satisfying w([u, v]) = 0 if and only if [u, v] 6∈ E. Typically, we can equip a directed graph
with a canonical weight function by defining w([u, v]) ≡ 1 if and only if [u, v] ∈ E. The
in-degree p(v) and out-degree q(v) of a vertex v ∈ V , respectively, are defined as

p(v) ≡
∑

{u|[u,v]∈E}

w([u, v]), and q(v) ≡
∑

{u|[v,u]∈E}

w([v, u]) . (1)

Let H(V ) denote the space of functions f : V → R, which assigns a real value f(v) to
each vertex v. The function f can be represented as a column vector in R

|V |, where |V |
denotes the number of the vertices in V . The function space H(V ) can be endowed with
the usual inner product:

〈f, g〉 =
∑

v

f(v)g(v). (2)

Accordingly, the norm of the function induced from the inner product is ‖f‖ =
√

〈f, f〉.

2.2 Bipartite Graphs

A bipartite graph G = (H,A,L) is a special type of directed graph that consists of two
sets of vertices, denoted by H and A respectively, and a set of edges (or links), denoted by
L ⊆ H × A. In a bipartite graph, each edge connects a vertex in H to a vertex in A. Any
directed graph Γ = (V,E) can be regarded as a bipartite graph using the following simple
construction [14]: H ≡ {h|h ∈ V, q(h) > 0}, A ≡ {a|a ∈ V, p(a) > 0}, and L ≡ E.
Figure 1 depicts the construction of the bipartite graph. Notice that vertices of the original
graph Γ may appear in both vertex sets H and A of the constructed bipartite graph.

The intuition behind the construction of the bipartite graph is provided by the so-called hub
and authority web model introduced by Kleinberg [13]. The model distinguishes between
two types of Web pages: authoritative pages, which are pages relevant to some topic,
and hub pages, which are pages pointing to relevant pages. Note that some Web pages can



Figure 1: Constructing a bipartite graph from a directed one. Left: directed graph. Right:
bipartite graph. The hub set H = {1, 3, 5, 6}, and the authority set A = {2, 3, 4}. Notice
that the vertex indexed by 3 is simultaneously in the hub and authority set.

simultaneously be both hub and authority pages (see Figure 1). Hubs and authorities exhibit
a mutually reinforcement relationship: a good hub node points to many good authorities
and a good authority node is pointed to by many good hubs. It is interesting to note that in
general there is no direct link from one authority to another. It is the hub pages that glue
together authorities on a common topic.

According to Kleinberg’s model, we suggestively call the vertex set H in the bipartite graph
the hub set, and the vertex set A the authority set.

2.3 Smoothness Functionals

If two distinct vertices u and v in the authority set A are co-linked by vertex h in the hub
set H as shown in the left panel of Figure 2, then we think that u and v are likely to be
related, and the co-linkage strength induced by h between u and v can be measured by

ch([u, v]) =
w([h, u])w([h, v])

q(h)
. (3)

In addition, we define ch(v, v) = 0 for all v in the authority set A and for all h in the hub
set H. Such a relevance measure can be naturally understood in the situation of citation
networks. If two articles are simultaneously cited by some other article, then this should
make it more likely that both articles deal with a similar topics. Moreover, the more articles
cite both articles together, the more significant the connection. A natural question arising
in this context is why the relevance measure is further normalized by out-degree. Let us
consider the following two web sites: Yahoo! and kernel machines. General interest portals
like Yahoo! consists of pages having a large number of diverse hyperlinks. The fact that
two web pages are co-linked by Yahoo! does not establish a significant connection between
them. In contrast, the pages on the kernel machine Web site have much fewer hyperlinks,
but the Web pages pointed to are closely related in topic.

Let f denote a function defined on the authority set A. The smoothness of function f can
be measured by the following functional:

ΩA(f) =
1

2

∑

u,v

∑

h

ch([u, v])

(

f(u)
√

p(u)
−

f(v)
√

p(v)

)2

. (4)

The smoothness functional penalizes large differences in function values for vertices in the
authority set A that are strongly related. Notice that the function values are normalized by



Figure 2: Link and relevance. Left panel: vertices u and v in the authority set A are co-
linked by vertex h in the hub set H. Right panel: vertices u and v in the hub set H co-link
vertex a in the authority set A.

in-degree. For the Web graph, the explanation is similar to the one given before. Many
web pages contain links to popular sites like the Google search engine. This does not mean
though that all these Web pages share a common topic. However, if two web pages point to
web page like the one of the Learning with Kernels book, it is likely to express a common
interest for kernel methods.

Now define a linear operator T : H(A) → H(H) by

(Tf)(h) =
∑

a

w([h, a])
√

q(h)p(a)
f(a). (5)

Then its adjoint T ∗ : H(H) → H(A) is given by

(T ∗f)(a) =
∑

h

w([h, a])
√

q(h)p(a)
f(h). (6)

These two operators T and T ∗ were also implicitly suggested by [8] for developing a new
Web page ranking algorithm. Further define the operator SA : H(A) → H(A) by compos-
ing T and T ∗, i.e.

SA = T ∗T, (7)
and the operator ∆A : H(A) → H(A) by

∆A = I − SA, (8)

where I denotes the identity operator. Then we can show the following (See Appendix A
for the proof):
Proposition 1. ΩA(f) = 〈f, ∆Af〉.

Comparing with the combinatorial Laplace operator defined on undirected graphs [5], we
can think of the operator ∆A as a Laplacian but defined on the authority set of directed
graphs. Note that Proposition 1 also shows that the Laplacian ∆A is positive semi-definite.
In fact, we can further show that the eigenvalues of the operator SA are scattered in [0, 1],
and accordingly the eigenvalues of the Laplacian ∆A fall into [0, 1].

Similarly, if two distinct vertices u and v co-link vertex a in the authority set A as shown in
right panel of Figure 2, then u and v are also thought to be related. The co-linkage strength
between u and v induced by a can be measured by

ca([u, v]) =
w([u, a])w([v, a])

p(a)
. (9)



and the smoothness of function f on the hub set H can be measured by:

ΩH(f) =
1

2

∑

u,v

∑

a

ca([u, v])

(

f(u)
√

q(u)
−

f(v)
√

q(v)

)2

. (10)

As before, one can define the operators SH = TT ∗ and ∆H = I − SH leading to the
corresponding statement:
Proposition 2. ΩH(f) = 〈f, ∆Hf〉.

Convexly combining together the two smoothness functionals (4) and (10), we obtain a
smoothness measure of function f defined on the whole vertex set V :

Ωγ(f) = γΩA(f) + (1 − γ)ΩH(f), 0 ≤ γ ≤ 1, (11)
where the parameter γ weighs the relative importance between ΩA(f) and ΩH(f). Extend
the operator T to H(V ) by defining (Tf)(v) = 0 if v is only in the authority set A and
not in the hub set H . Similarly extend T ∗ by defining (T ∗f)(v) = 0 if v is only in the
hub set H and not in the authority set A. Then, if the remaining operators are extended
correspondingly, one can define the operator Sγ : H(V ) → H(V ) by

Sγ = γSA + (1 − γ)SH , (12)
and the Laplacian on directed graphs ∆γ : H(V ) → H(V ) by

∆γ = I − Sγ . (13)
Clearly, ∆γ = γ∆A + (1 − γ)∆H . By Proposition 1 and 2, it is easy to see that:
Proposition 3. Ωγ(f) = 〈f, ∆γf〉.

2.4 Regularization

Define a function y in H(V ) in which y(v) = 1 or −1 if vertex v is labeled as positive
or negative, and 0, if it is not labeled. The classification problem can be regarded as the
problem of finding a function f , which reproduces the target function y to a sufficient
degree of accuracy while being smooth in a sense quantified by the above smoothness
functional. A formalization of this idea leads to the following optimization problem:

f∗ = argmin
f∈H(V )

{

Ωγ(f) +
µ

2
‖f − y‖2

}

. (14)

The final classification of vertex v is obtained as sign f ∗(v). The first term in the bracket
is called the smoothness term or regularizer, which measures the smoothness of function
f, and the second term is called the fitting term, which measures its closeness to the given
function y. The trade-off between these two competitive terms is captured by a positive
parameter µ. Successively smoother solutions f ∗ can be obtained by decreasing µ → 0.
Theorem 4. The solution f∗ of the optimization problem (14) satisfies

∆γf∗ + µ(f∗ − y) = 0.

Proof. By Proposition 3, we have

(∆γf)(v) =
∂Ωγ(f)

∂f

∣

∣

∣

∣

v

.

Differentiating the cost function in the bracket of (14) with respect to function f completes
the proof.

Corollary 5. The solution f∗ of the optimization problem (14) is
f∗ = (1 − α)(I − αSγ)−1y, where α = 1/(1 + µ).

It is worth noting that the closed form solution presented by Corollary 5 shares the same
appearance as the algorithm proposed by [17], which operates on undirected graphs.



3 Experiments

We considered the Web page categorization task on the WebKB dataset [6]. We only
addressed a subset which contains the pages from the four universities: Cornell, Texas,
Washington, Wisconsin. We removed pages without incoming or outgoing links, result-
ing in 858, 825, 1195 and 1238 pages respectively, for a total of 4116. These pages were
manually classified into the following seven categories: student, faculty, staff, department,
course, project and other. We investigated two different classification tasks. The first is
used to illustrate the significance of connectivity information in classification, whereas the
second one stresses the importance of preserving the directionality of edges. We may as-
sign a weight to each hyperlink according to the textual content of web pages or the anchor
text contained in hyperlinks. However, here we are only interested in how much we can
obtain from link structure only and hence adopt the canonical weight function defined in
Section 2.1.

We first study an extreme classification problem: predicting which university the pages
belong to from very few labeled training examples. Since pages within a university are
well-linked, and cross links between different universities are rare, we can imagine that
few training labels are enough to exactly classify pages based on link information only. For
each of the universities, we in turn viewed corresponding pages as positive examples and
the pages from the remaining universities as negative examples. We have randomly draw
two pages as the training examples under the constraint that there is at least one labeled
instance for each class. Parameters were set to γ = 0.50, and α = 0.95. (In fact, in
this experiment the tuning parameters have almost no influence on the result.) Since the
Web graph is not connected, some small isolated subgraphs possibly do not contain labeled
instances. The values of our classifying function on the pages contained in these subgraphs
will be zeros and we simply think of these pages as negative examples. This is consistent
with the search engine ranking techniques [2, 13]. We compare our method with SVMs
using a kernel matrix K constructed as K = W T W [11], where W denotes the adjacency
matrix of the web graph and W T denotes the transpose of W . The test errors averaged over
100 training sample sets for both our method and SVMs are summarized into the following
table:

Cornel Texas Washington Wisconsin
our method 0.03 (± 0.00) 0.02 (± 0.01) 0.01 (± 0.00) 0.02 (± 0.00)

SVMs 0.42 (± 0.03) 0.39 (± 0.03) 0.40 (± 0.02) 0.43 (± 0.02)

However, to be fair, we should state that the kernel matrix that we used in the SVM may not
be the best possible kernel matrix for this task — this is an ongoing research issue which is
not the topic of the present paper.

The other investigated task is to discriminate the student pages in a university from the
non-student pages in the same university. As a baseline we have applied our regularization
method on the undirected graph [17] obtained by treating links as undirected or bidirec-
tional, i.e., the affinity matrix is defined to be W T + W . We use the AUC scores to
measure the performances of the algorithms. The experimental results in Figure 3(a)-3(d)
clearly demonstrate that taking the directionality of edges into account can yield substan-
tial accuracy gains. In addition, we also studied the influence of different choices for the
parameters γ and α; we used the Cornell Web for that purpose and sampled 10 labeled
training pages. Figure 3(e) show that relatively small values of α are more suitable. We
think that is because the subgraphs in each university are quite small, limiting the infor-
mation conveyed in the graph structure. The influence of γ is shown in Figure 3(f). The
performance curve shows that large values for γ are preferable. This confirms the conjec-
ture that co-link structure among authority pages is much more important than within the
hub set.
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Figure 3: Classification on the WebKB dataset. Figure (a)-(d) depict the AUC scores of
the directed and undirected regularization methods on the classification problem student
vs. non-student in each university. Figure (e)-(f) illustrate the influences of the different
choices of the parameters α and γ.

4 Conclusions

We proposed a general regularization framework on directed graphs, which has been vali-
dated on a real-word Web data set. The remaining problem is how to choose the suitable
parameters contained in this approach. In addition, it is worth noticing that this framework
can be applied without any essential changes to bipartite graphs, e.g. to graphs describing
customers’ purchase behavior in market basket analysis. Moreover, in the absence of la-
beled instances, this framework can be utilized in an unsupervised setting as a (spectral)
clustering method for directed or bipartite graphs. Due to lack of space, we have not been
able to give a thorough discussion of these topics.
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A Proof of Proposition 1

Expand the right site of Equ. (4):

ΩA(f) =
∑

u,v

∑

h

ch([u, v])

(

f2(u)

p(u)
−

f(u)f(v)
√

p(u)p(v)

)

=
∑

u

(

∑

v

∑

h

ch([u, v])

)

f2(u)

p(u)
−

∑

u,v

∑

h

ch([u, v])
f(u)f(v)

√

p(u)p(v)
. (15)

By substituting Equ. (3), the first term in the above equality can be rewritten as

∑

u

(

∑

v

∑

h

w([h, u])w([h, v])

q(h)

)

f2(u)

p(u)

=
∑

u

(

∑

h

w([h, u])

p(u)

)

f
2(u) =

∑

u

f
2(u). (16)

In addition, the second term in Equ. (15) can be transformed into
∑

u,v

∑

h

w([h, u])w([h, v])

q(h)

f(u)f(v)
√

p(u)p(v)

=
∑

u,v

∑

h

f(u)
w([h, u])

√

q(h)p(u)

w([h, v])
√

q(h)p(v)
f(v). (17)

Substituting Equ. (16) and (17) into (15), we have

ΩA(f) =
∑

u

f
2(u) −

∑

u,v

∑

h

f(u)
w([h, u])

√

q(h)p(u)

w([h, v])
√

q(h)p(v)
f(v). (18)

This completes the proof.


