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Abstract

There has been substantial progress in the past decade in the development
of object classifiers for images, for example of faces, humans and vehi-
cles. Here we address the problem of contaminations (e.g. occlusion,
shadows) in test images which have not explicitly been encountered in
training data. The Variational Ising Classifier (VIC) algorithm models
contamination as a mask (a field of binary variables) with a strong spa-
tial coherence prior. Variational inference is used to marginalize over
contamination and obtain robust classification. In this way the VIC ap-
proach can turn a kernel classifier for clean data into one that can tolerate
contamination, without any specific training on contaminated positives.

1 Introduction

Recent progress in discriminative object detection, especially for faces, has yielded good
performance and efficiency [1, 2, 3, 4]. Such systems are capable of classifying those
positives that can be generalized from positive training data. This is restrictive in practice
in that test data may contain distortions that take it outside the strict ambit of the training
positives. One example would be lighting changes (to a face) but this can be addressed
reasonably effectively by a normalizing transformation applied to training and test images;
doing so is common practice in face classification. Other sorts of disruption are not so
easily factored out. A prime example is partial occlusion.

The aim of this paper is to extend a classifier trained on clean positives to accept also
partially occluded positives, without further training. The approach is to capture some of
the regularity inherent in a typical pattern of contamination, namely its spatial coherence.
This can be thought of as extending the generalizing capability of a classifier to tolerate the
sorts of image distortion that occur as a result of contamination.

As done previously in one-dimension, for image contours [5], the Variational Ising Classi-
fier (VIC) models contamination explicitly as switches with a strong coherence prior in the
form of an Ising model, but here over the full two-dimensional image array. In addition,
the Ising model is loaded with a bias towards non-contamination. The aim is to incorporate
these hidden contamination variables into a kernel classifier such as [1, 3]. In fact the Rel-
evance Vector Machine (RVM) is particularly suitable [6] as it is explicitly probabilistic,
so that contamination variables can be incorporated as a hidden layer of random variables.
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Figure 1: The 2D Ising model is applied over a graph with edgese ∈ Υ between neigh-
bouring pixels (connected 4-wise).

Classification is done by marginalization over all possible configurations of the hidden vari-
able array, and this is made tractable by variational (mean field) inference. The inference
scheme makes use of “hallucination” to fill in parts of the object that are unobserved due
to occlusion.

Results of VIC are given for face detection. First we show that the classifier performance
is not significantly damaged by the inclusion of contamination variables. Then a contam-
inated test set is generated using real test images and computer generated contaminations.
Over this test data the VIC algorithm does indeed perform significantly better than a con-
ventional classifier (similar to [4]). The hidden variable layer is shown to operate effec-
tively, successfully inferring areas of contamination. Finally, inference of contamination is
shown working on real images with real contaminations.

2 Bayesian modelling of contamination

Classification requiresP (F |I), the posterior for the propositionF that an object is present
given the image data intensity arrayI. This can be computed in terms of likelihoods

P (F | I) = P (I | F )P (F )/
(

P (I | F )P (F ) + P (I | F )P (F )
)

(1)

so then the testP (F | I) > 1
2 becomes

log P (I | F )− log P (I | F ) > t (2)

wheret is a prior-dependent threshold that controls the tradeoff between positive and neg-
ative classification errors. Suppose we are given a likelihoodP (I|θ, F ) for the presence of
a face given contaminationθ, an array of binary “observation” variables corresponding to
each pixelIj of I, such thatθj = 0 indicates contamination at that pixel, whereasθj = 1
indicates a successfully observed pixel. Then, in principle,

P (I|F ) =
∑

θ

P (I|θ, F )P (θ), (3)

(making the reasonable assumptionP (θ|F ) = P (θ), that the pattern of contamination is
object independent) and similarly forlog P (I | F ). The marginalization itself is intractable,
requiring a summation over all2N possible configurations ofθ, for images withN pixels.
Approximating that marginalization is dealt with in the next section. In the meantime, there
are two other problems to deal with: specifying the priorP (θ); and specifying the likeli-
hood under contaminationP (I|θ, F ) given only training data for the unoccluded object.

2.1 Prior over contaminations

The prior contains two terms: the first expresses the belief that contamination will occur
in coherent regions of a subimage. This takes the form of an Ising model [7] with energy



UI(θ) that penalizes adjacent pixels which differ in their labelling (see Figure 1); the second
termUC biases generally against contaminationa priori and its balance with the first term
is mediated by the constantλ. The total prior energy is then

U(θ) = UI(θ) + λUC(θ) =
∑

e∈Υ

[1− δ(θe1
− θe2

)] + λ
∑

j

δ(θj), (4)

whereδ(x) = 1 if x = 0 and0 otherwise, ande1, e2 are the indices of the pixels at either
end of edgee ∈ Υ (figure 1). The prior energy determines a probability via atemperature
constant1/T0 [7]:

P (θ) ∝ e−U(θ)/T0 = e−UI(θ)/T0e−λUC(θ)/T0 (5)

2.2 Relevance vector machine

An unoccluded classifierP (F |I, θ = 0) can be learned from training data using a Rele-
vance Vector Machine (RVM) [6], trained on a database offrontal face and non-face im-
ages [8] (see Section 4 for details). The probabilistic properties of the RVM make it a good
choice when (later) it comes to marginalising overθ. For now we consider how to construct
the likelihood itself. First the conventional, unoccluded case is considered for which the
posteriorP (F |I) is learned from positive and negative examples. Kernel functions [9] are
computed between a candidate imageI and a subset ofrelevance vectors{xk}, retained
from the training set. Gaussian kernels are used here to compute

y(I) =
∑

k

wk exp

(

−α
∑

j

(Ij − xkj)
2

)

. (6)

wherewk are learned weights, andxkj is thejth pixel of thekth relevance vector. Then the
posterior is computed via the logistic sigmoid function as

P (F |I, θ = 1) = σ(y(I)) =
1

1 + e−y(I)
. (7)

and finally the unoccluded data-likelihood would be

P (I|F, θ = 1) ∝ σ(y(I))/P (F ). (8)

2.3 Hallucinating appearance

The aim now is to derive the occluded likelihood from the unoccluded case, where the con-
tamination mask is known, without any further training. To do this, (8) must be extended
to giveP (I|F, θ) for arbitrary masksθ, despite the fact the pixelsIj from the object are
not observed whereverθj = 0. In principle one should take into account all possible (or
at least probable) values for the occluded pixels. Here, for simplicity, a single fixed hallu-
cination is substituted for occluded pixels, then we proceed as if those values had actually
been observed. This gives

P (I|F, θ) ∝ σ(ỹ(I, θ))/P (F ) (9)

where

ỹ(θ, I) = y(Ĩ(I, θ, F )) and
(

Ĩ(I, θ, F )
)

j
=

{

Ij if θj = 1
(E [I|F ])j otherwise (10)

in which E [I|F ] is a fixed hallucination, conditioned on the modelF , and computed as a
sample mean over training instances.



3 Approximate marginalization of θ by mean field

At this point we return to the task of marginalising overθ (3) to obtainP (I|F ) andP (I|F )
for use in classification (2). Due to the connectedness of neighbouring pixels in the Ising
prior (figure 1),P (I, θ|F ) is a Markov Random Field (MRF) [7]. The marginalized likeli-
hoodP (I|F ) could be estimated by Gibbs sampling [10] but that takes tens of minutes to
converge in our experiments. The following section describes a mean field approximation
which converges in a few seconds. The mean field algorithm is given here forP (I|F ) but
must be repeated also forP (I|F ), simply substitutingF for F throughout.

3.1 Variational approximation

Mean field approximation is a form of variational approximation [11] and transforms an
inference problem into the optimization of a functionalJ :

J(Q) = log P (I|F )− KL [Q(θ)‖P (θ|F, I)] , (11)

where KL is the Kullback-Liebler divergence

KL [Q(θ)‖P (θ|F, I)] =
∑

θ

Q(θ) log
Q(θ)

P (θ|F, I)
.

The objective functionalJ(Q) is a lower bound on the log-marginal probabilitylog P (I|F )
[11]; when it is maximized atQ∗, it gives both the marginal likelihoodJ(Q∗) =
log P (I|F ), and the posterior distributionQ∗(θ) = P (θ|F, I) over hidden variables. Fol-
lowing [11], J(Q) is simplified using Bayes’ rule:

J(Q) = H(Q) + EQ [log P (I, θ|F )]

whereH(·) is the entropy of a distribution [12] andEQ[g(θ)] =
∑

θ Q(θ)g(θ) denotes the
expectation of a functiong with respect toQ(θ). A form of Q(θ) must be chosen that makes
the maximization ofJ(Q) tractable. For mean-field approximation,Q(θ) is modelled as
a pixel-wise product of factors:Q(θ) =

∏

i Qi(θi). It is now possible to maximizeJ
iteratively with respect to each marginalQi(θi) in turn, giving themean field update[11]:

Qi ←
1

Zi
exp

{

EQ|θi
[log P (I, θ|F )]

}

, (12)

where
Zi =

∑

θi

exp
{

EQ|θi
[log P (I, θ|F )]

}

is the partition function andEQ|θi
[·] is the expectation with respect toQ givenθi:

EQ|θi
[g(θ)] =

∑

{θ}j\i





∏

j\i

Qj(θj)



 g(θ).

3.2 Taking expectations overP (I, θ|F )

To perform the expectation required in (12), the log-joint distribution is written as:

log {P (I, θ|F )} = − log
(

1 + e−ỹ(θ,I)
)

− 1
T0

UI(θ)−
λ
T0

UC(θ) + const.

The conditional expectationEQ|θi
in (12) is found efficiently from the complete expecta-

tions by replacing only terms inθi. Likewise, when one factor ofQ changes (12), the



complete expectations may be updated without recomputing them ab initio. For brevity,
we give the expressions for the complete expectations only. For the prior this is simply:

EQ[U(θ)] =
∑

e∈Υ

∑

θe

Qe(θe) [1− δ(θe1
− θe2

)] + λ
∑

j

Qj(θj = 0). (13)

For the likelihood it is more difficult. Saul et al. [13] show how to approximate the expec-
tation over the sigmoid function by introducing a dummy variableξ:

EQ

[

log(1 + e−ỹ(θ,I))
]

≤ −ξEQ[ỹ(θ, I)] + log
{

EQ

[

eξỹ(θ,I)
]

+ EQ

[

e(ξ−1)ỹ(θ,I)
]}

.

The Gaussian RBF in (6) means that it is not feasible to compute the expectation1

EQ
[

eξỹ(θ,I)
]

, so a simpler approximation is used:

EQ[log σ(ỹ(θ, I)] ≈ log σ (EQ[ỹ(θ, I)]) ,

where

EQ[ỹ(θ, I)] =
∑

k

wk

∏

j

∑

θj

Qj(θj) exp
(

−α
(

Ĩ(I, θ, F )j − xkj

)2
)

. (14)

4 Results and discussion

The mean field algorithm described above is capable only of local optimization ofJ(Q).
A symptom of this is that it exhibitsspontaneous symmetry breaking[11], setting the con-
tamination field to either all contaminated or all uncontaminated. This is alleviated through
careful initialization. By performing iterations initially at a high temperature,Th, the prior
is weakened. The temperature is then progressively decreased, on a linear annealing sched-
ule [10], until the modelled prior temperatureT0 is reached. Figure 2 shows pseudo-code
for the VIC algorithm. Note also that an advantage of hallucinating appearance from the
mean face is that the hallucination process requires no computation within the optimization
loop. For19 × 19 subimages, the average time taken for the VIC algorithm to converge
is 4 seconds. However this is an unoptimized Matlab implementation; and in C++ it is
anticipated to be at least 10 times faster.

The training set used for the RVM [8] contains subimages of registered faces and non-faces
which were histogram equalized [14] to reduce the effect of different lighting with their
pixel values scaled to the range[0, 1]. The same is done to each test subimageI. The RVM
was trained using 1500 face examples and 1500 non-face examples2. Parameters were set
as follows: the RBF width parameter in (6) isα = 0.05; the contamination costλ = 0.2
and the temperature constants areTh = 2.5, T0 = 1.5 and∆T = 0.2.

As a by-product of the VIC algorithm, the posterior patternP (θ|F, I) of contamination is
approximately inferred as the value ofQ which maximizesJ . Figure 3 shows some results
of this. As might be expected, for a non-face, the algorithm hallucinates an intact face
with total contamination (For example, row 4 of the figure); but of course the marginalized
posterior probabilityP (F |I) is very small in such a case.

4.1 Classifier

To assess the classification performance of the VIC, contaminated positives were auto-
matically generated (figure 4). These were combined with pure faces and pure non-faces
(none of which were used in the training set) and tested to produce the Receiver Operating
Characteristic (ROC) curves are given in Figure 4 for the unaltered RVM acting on the

1The termexp[ξỹ(θ, I)] = exp[ξ
∑

k
wk

∏

j
e−αdj(I,xk|θj)] does not factorize across pixels

2These sizes are limited in practice by the complexity of the training algorithm [6]



Require: Candidate image region I
Require: Parameters Th, T0, ∆T , λ
Require: RVM weights and examples wk, xk

Require: Mean face appearance Ī

Initialize Qi(θi = 1)← 0.5 ∀i
Compute EQ[U(θ)] (13)
Compute EQ[ỹ(θ, I)] (14)

T ← Th

while T > T0 do
while Q not converged do

for All image locations i do
Compute conditional expectations EQ|θi

[U(θ)] and EQ|θi
[ỹ(θ, I)]

Compute EQ|θi
[log P (I, θ|F )] = log σ

(

EQ|θi
[ỹ(θ, I)]

)

− EQ|θi
[U(θ)]

Compute partition Zi =
∑

θi
exp

{

EQ|θi
[log P (I, θ|F )]

}

Update Qi(θi)←
1

Zi
exp

{

EQ|θi
[log P (I, θ|F )]

}

Update complete expectations EQ[U(θ)] and EQ[ỹ(θ, I)]
end for
T ← T −∆T

end while
end while

Figure 2: Pseudo-code for the VIC algorithm
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Figure 3: Partially occluded mages with inferred areas of probable contamination (dark).

contaminated set and for the new contamination-tolerant VIC outlined in this paper. For
comparison, points are shown for aboosted cascade of classifiers[15] which is a publicly
available detector based on the system of Viola and Jones [4]. The curve shown for the
RVM against anuncontaminatedtest set confirms that contamination does make the classi-
fication task considerably harder. Figure 5 shows some natural face images that the boosted
cascade [15] fails to detect, either because of occlusion or due to a degree of deviation from
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Figure 4: ROC curves. Also shown are some of the contaminated positives used to generate
the curves. These were made by sampling contamination patterns from the prior and using
them to mix a face and a non-face artificially.
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Figure 5: Images that the boosted cascade [15] failed to detect as faces: the VIC algo-
rithm produces higher posterior face probability by labelling certain regions with unusual
appearance (eg due to 3D rotation) as contaminated.

the frontal pose. The VIC algorithm detects them successfully however.

4.2 Discussion

Figure 4 shows that by modelling the contamination field explicitly, the VIC detector im-
proves on the performance, over a contaminated test set, both of a plain RVM and of a
boosted cascade detector. The algorithm is relatively expensive to execute compared, say,
with the contamination-free RVM. However, this could be mitigated by cascading [4], in
which a simple and efficient classifier, tuned to return a high rate of false positives for all
objects, contaminated and non-contaminated, would make a preliminary sweep of a test
image. The contamination-tolerant VIC algorithm would then be applied to the candidate
subimages that remain, thereby concentrating computational power on just a few locations.

Figure 5 illustrates the operation of the contamination mechanism on real images, all of



which are detected as faces by the VIC algorithm but missed by the boosted cascade. There
is no occlusion in these examples but rotations have distorted the appearance of certain
features. The VIC algorithm has deals with this by labelling the distortions as contaminated
areas, and hallucinating face-like texture in their place.

In conclusion, we have developed the VNC algorithm for object detection in the presence
of coherently contaminated data. Contamination is modelled as coherent via an Ising prior,
and is marginalized out by variational inference. Experiments show that VIC classifies
contaminated images more robustly than classifiers designed for clean data. It is worth
pointing out that the approach of the VIC algorithm is not limited to RVMs. Any proba-
bilistic detector for which it is possible to estimate the expectation (14) could be modified
in a similar way to deal with spatially coherent contamination. Future work will address:
improved efficiency by incorporating the VIC into a cascade of simple classifiers; alterna-
tives to data hallucination using marginalization over missing data, if a tractable means of
doing this can be found.
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