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Abstract

Visual action recognition is an important problem in computer vision.
In this paper, we propose a new method to probabilistically model and
recognize actions of articulated objects, such as hand or body gestures,
in image sequences. Our method consists of three levels of representa-
tion. At the low level, we first extract a feature vector invariant to scale
and in-plane rotation by using the Fourier transform of a circular spatial
histogram. Then, spectral partitioning [20] is utilized to obtain an initial
clustering; this clustering is then refined using a temporal smoothness
constraint. Gaussian mixture model (GMM) based clustering and density
estimation in the subspace of linear discriminant analysis (LDA) are then
applied to thousands of image feature vectors to obtain an intermediate
level representation. Finally, at the high level we build a temporal multi-
resolution histogram model for each action by aggregating the clustering
weights of sampled images belonging to that action. We discuss how this
high level representation can be extended to achieve temporal scaling in-
variance and to include Bi-gram or Multi-gram transition information.
Both image clustering and action recognition/segmentation results are
given to show the validity of our three tiered representation.

1 Introduction

Articulated object action modeling, tracking and recognition has been an important re-
search issue in computer vision community for decades. Past approaches [3, 13, 4, 6, 23, 2]
have used many different kinds of direct image observations, including color, edges, con-
tour or moments [14], to fit a hand or body’s shape model and motion parameters.

In this paper, we propose to learn a small set of object appearance descriptors, and then
to build an aggregated temporal representation of clustered object descriptors over time.
There are several obvious reasons to base gesture or motion recognition on a time sequence
of observations. First, most hand or body postures are ambiguous. For example, in Ameri-
can Sign Language, ’D’ and ’G’, ’H’ and ’U’ have indistinguishable appearance from some
viewpoints. Furthermore, these gestures are difficult to track from frame to frame due to
motion blur, lack of features, and complex self-occlusions. By modeling hand/body gesture
as a sequential learning problem, appropriate discriminative information can be retrieved
and more action categories can be handled.



In related work, Darrell and Pentland [7] describe dynamic time warping (DTW) to align
and recognize a space-time gesture against a stored library. To build the library, key views
are selected from incoming an video by choosing views that have low correlation with all
current views. This approach is empirical and does not guarantee any sort of global consis-
tency of the chosen views. As a result, recognition may be unstable. In comparision, our
method describes image appearances uniformly and clusters them globally from a training
set containing different gestures.

For static hand posture recognition, Tomasi et al. [24] apply vector quantization methods
to cluster images of different postures and different viewpoints. This is a feature-based
approach, with thousands of features extracted for each image. However, clustering in a
high dimensional space is very difficult and can be unstable. We argue that fewer, more
global features are adequate for the purposes of gesture recognition. Furthermore, the
circular histogram representation has adjustable spatial resolution to accomodate differing
appearance complexities, and it is translation, rotation, and scale invariant.

In other work, [27, 9] recognize human actions at a distance by computing motion in-
formation between images and relying on temporal correlation on motion vectors across
sequences. Our work also makes use of motion information, but does not rely exclusively
on it. Rather, we combine appearance and motion cues to increase sensitivity beyond what
either can provide alone. Since our method is based on the temporal aggregation of image
clusters as a histogram to recognize an action, it can also be considered to be a tempo-
ral texton-like method [17, 16]. One advantage of the aggregated histogram model in a
time-series is that it is straightforward to accommodate temporal scaling by using a sliding
window. In addition, higher order models corresponding to bigrams or trigrams of simpler
“gestemes” can also be naturally employed to extend the descriptive power of the method.

In summary, there are four principal contributions in this paper. First, we propose a new
scale/rotation-invariant hand image descriptor which is stable, compact and representative.
Second, we introduce a methods for sequential smoothing of clustering results. Third,
we show LDA/GMM with spectral partitioning initialization is an effective way to learn
well-formed probability densities for clusters. Finally, we recognize image sequences as
actions efficiently based on a flexible histogram model. We also discuss improvement to
the method by incorporating motion information.

2 A Three Tiered Approach

We propose a three tiered approach for dynamic action modeling comprising low level
feature extraction, intermediate level feature vector clustering and high level histogram
recognition as shown in Figure 1.
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Figure 1: Diagram of a three tier approach for dynamic articulated object action modeling.
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Figure 2: (a) Image after background subtraction (b) GMM based color segmentation
(c) Circular histogram for feature extraction.

2.1 Low Level: Rotation Invariant Feature Extraction

In the low level image processing, our goals are to locate the region of interest in an im-
age and to extract a scale and in-plane rotation invariant feature vector as its descriptor.
In order to accomplish this, a reliable and stable foreground model of the target in ques-
tion is expected. Depending on the circumstances, a Gaussian mixture model (GMM) for
segmentation [15], probabilistic appearance modeling [5], or dynamic object segmentation
by Generalized Principal Component Analysis (GPCA) [25] are possible solutions. In this
paper, we apply a GMM for hand skin color segmentation.

We fit a GMM by first performing a simple background subtraction to obtain a noisy fore-
ground containing a hand object (shown in Figure 2 (a)). From this, more than 1 mil-
lion RGB pixels are used to train skin and non-skin color density models with 10 Gaus-
sian kernels for each class. Having done this, for new images a probability density ratio
Pskin/Pnonskin of these two classes is computed. IfPskin/Pnonskin is larger than 1, the
pixel is considered as skin (foreground) and is otherwise background. A morphological
operator is then used to clean up this initial segmentaion and create a binary mask for the
hand object. We then compute the centroid and second central moments of this 2D mask.
A circle is defined about the target by setting its center as the centroid and its radius as
2.8 times largest eigenvalues of the second central moment matrix (covering over99% skin
pixels in Figure 2 (c)). This circle is then divided to have 6 concentric annuli which con-
tain 1, 2, 4, 8, 16, 32 bins from inner to outer, respectively. Since the position and size of
this circular histogram is determined by the color segmentation, it is translation and scale
invariant.

We then normalize the density valuePskin + Pnonskin = 1 for every pixel within the
foreground mask (Figure 2) over the hand region. For each bin of the circular histogram,
we calculate the mean ofPskin ( −log(Pskin), or−log(Pskin/Pnonskin) are also possible
choices) of pixels in that bin as its value. The values of all bins along each circle form a
vector, and 1D Fourier transform is applied to this vector. The power spectra of all annuli
are ordered into a linear list producing a feature vector~f(t) of 63 dimensions representing
the appearance of a hand image.1 Note that the use of the Fourier power spectrum of the
annuli makes the representation rotation invariant.

2.2 Intermediate Level: Clustering Presentation for Image Frames

After the low level processing, we obtain a scale and rotation invariant feature vector as
an appearance representation for each image frame. The temporal evolution of feature
vectors represent actions. However, not all the images are actually unique in appearance.

1An optional dimension reduction of feature vectors can be achieved by eliminating dimensions
which have low variance. It means that feature values of those dimensions do not change much in the
data, therefore are non-informative.



At the intermediate level, we cluster images from a set of feature vectors. This frame-wise
clustering is critical for dimension reduction and the stability of high level recognition.

Initializing Clusters by Spectral Segmentation There are two critical problems with
clustering algorithms: determining the true number of clusters and initializing each clus-
ter. Here we use a spectral clustering method [20, 22, 26, 18] to solve both problems.
We first build the affinity matrix of pairwise distances between feature fectors2. We then
perform a singular value decomposition on the affinity matrix with proper normalization
[20]. The number of clusters is determined by choosing then dominant eigenvalues. The
corresponding eigenvectors are taken as an orthogonal subspace for all the data.

To getn cluster centers, we take the approach of [20] and choose vectors that minimize the
absolute value of cosine between any two cluster centers:

ID(k) =

{

rand(0, N) : k = 1

arg mint=1..N

∑k−1
c=1 | cos( ~fn(ID(c)), ~fn(t))| : n ≥ k > 1

(1)

where ~fn(t) is the feature vector of image framet after numerical normalization in [20]
andID(k) is the image frame number chosen for the center of clusterk. N is the number of
images used for spectral clustering. For better clustering results, multiple restarts are used
for initialization.

Unlike [18], we find this simple clustering procedure is sufficient to obtain a good set of
clusters from only a few restarts. After initialization, the Kmeans [8] is used to smooth the
centers. LetC1(t) denote the class label for imaget, and~g(c) = ~f(ID(c)); c = 1 . . . n
denote cluster centers.

Refinement: Temporally Constrained Clustering Spectral clustering methods are de-
signed for an unordered “bag” of feature vectors, but, in our case, the temporal ordering
of image is an important source of information. In particular, the stablity of appearance is
easily computed by computing the motion energy3 between two frames. LetM(t) denote
the motion energy between framest andt−1. DefineTk,j = {t|C1(t) = k, C1(t−1) = j}
andM̄(k, j) =

∑

t∈Tk,j
M(t)/|Tk,j |. We now create a regularized clustering cost function

as

C2(t) = argmaxc=1..n







e−‖f(t)−g(c)‖

∑n
c=1 e−‖f(t)−g(c)‖

+ λ
e−

‖g(c)−g(C2(t−1))‖

M(t)

∑n
c=1 e

−
‖g(c)−g(C2(t−1))‖

M̄(c,C2(t−1))







(2)

whereλ is the weighting parameter. Here motion energyM(t) plays a role as the tem-
peratureT in simulated annealing. When it is high (strong motion between frames), the
motion continuity condition is violated and the labels of successive frames can change
freely; when it is low, the smoothness term constrains the possible transitions of classes
with low M̄(k, j).

With this in place, we now scan through the sequence searching forC2(t) of maximum
value givenC2(t − 1) is already fixed.4 This temporal smoothing is most relevant with
images with motions, and static frames are already stably clustered and therefore their
cluster labels to not change.

2The exponent of either Euclidean distance or Cosine distance between two feature vectors can
be used in this case.

3A simple method is to compute motion energy as the Sum of Squared Differences (SSD) by
subtracting twoPskin density masses from successive images.

4Note thatM̄(k, j) changes after scanning the labels of the image sequence once, thus more
iterations could be used to achieve more accurate temporal smoothness ofC3(t), t = 1..N . From
our experiments, more iterations does not change the result much.



GMM for Density Modeling and Smoothing Given clusters, we build a probability den-
sity model for each. A Gaussian Mixture Model [11, 8] is used to gain good local relaxation
based on the initial clustering result provided by the above method and good generalization
for new data. Due to the curse of dimensionality, it is difficult to obtain a good estimate
of a high dimensional density function with limited and largely varied training data. We
introduce an iterative method incorporating Linear Discriminative Analysis (LDA) [8] and
a GMM in an EM-like fashion to perform dimensional reduction. The initial clustering
labels help to build the scatter matrices for LDA. The optimal projection matrix of LDA is
then obtained from the decomposition of clusters’ scatter matrices [8]. The original feature
vectors can be further projected into a low dimensional space, which improves the estima-
tion of multi-variate Gaussian density function. With the new clustering result from GMM,
LDA’s scatter matrices and projection matrix can be re-estimated, and GMM can also be
re-modeled in the new LDA subspace. This loop converges within3 ∼ 5 iterations from
our experiments. Intuitively, LDA projects the data into a low dimensional subspace where
the image clusters are well separated, which helps to have a good parameter estimation for
GMM with limited data. Given more accurate GMM, more accurate clustering results are
obtained, which also causes better estimate of LDA. The theoretical proof of convergence
is undertaken. After this process, we have a Gaussian density model for each cluster.

2.3 High Level: Aggregated Histogram Model for Action Recognition

Given a set ofn clusters, definew(t) = [pc1(f(t)), pc2(f(t)), ..., pcn
(f(t))]T wherepx(y)

denotes the density value of the vectory with respect to the GMM for clusterx. An action
is then a trajectory of[w(t1), w(t1 + 1), ..., w(t2)]

T in <n. For recognition purposes, we
want to calculate some discriminative statistics from each trajectory. One natural way is to
use its meanHt1,t2 =

∑t2
t=t1

w(t)/(t2 − t1 + 1) over time which is a temporal weighted
histogram. Note that the histogramHt1,t2 bins are precisely corresponding to the trained
clusters.

From the training set, we aggregate the cluster weights of images within a given hand action
to form a histogram model. In this way, a temporal image sequence corresponding to one
action is represented by a single vector. The matching of different actions is equivalent to
compute the similarity of two histograms which has variants. Here we use Bhattacharyya
similarity metric [1] which has has several useful properties including: it is an approxima-
tion of χ2 test statistics with fixed bias; it is self-consistent; it does not have the singularity
problem while matching empty histogram bins; and its value is properly bounded within
[0, 1]. Assume we have a library of action histogramsH∗

1 , H∗
2 , ..., H∗

M , the class label of a
new actionĤt1,t2 is determined by the following equation.

L(Ĥt1,t2) = arg min
l=1..M







D(H∗
l , Ĥt1,t2) =

[

1 −

n
∑

c=1

√

H∗
l (c) ∗ Ĥt1,t2(c)

]
1
2







(3)

This method is low cost because only one exemplar per action category is needed.

One problem with this method is that all sequence information has been compressed, e.g.,
we cannot distinguish an opening hand gesture from a closing hand using only one his-
togram. This problem can be easily solved by subdividing the sequence and histogram
model into m parts:Hm

t1,t2 = [Ht1,(t1+t2)/m, ..., H(t1+t2)∗(m−1)/m,t2 ]
T . For an extreme

case when one frame is a subsequence, the histogram model simply becomes exactly the
vector form of the representative surface.

We intend to classify hand actions with speed differences into the same category. To
achieve this, the image frames within a hand action can be sub-sampled to build a set
of temporal pyramids. In order to segment hand gestures from a long video sequence, we
create several sliding windows with different frame sampling rates. The proper time scaling
magnitude is found by searching for the best fit over temporal pyramids.



Taken together, the histogram representation achieves an adjustable multi-resolution mea-
surement to describe actions. A Hidden Markov Model (HMM) with discrete observations
could be also employed to train models for different hand actions, but more template sam-
ples per gesture class are required. The histogram recognition method has the additional
advantage that it does not depend on extremely accurate frame-wise clustering. A small
proportion of incorrect labels does not effect the matching value much. In comparison,
in an HMM with few training samples, outliers seriously impact the accuracy of learning.
From the viewpoint of considering hand actions as a language process, our model is an in-
tegration of individual observations (by labelling each frame with a set of learned clusters)
from different time slots. The labels’ transitions between successive frames are not used
to describe the temporal sequence. By subdividing the histogram, we are extending the
representation to contain bigram, trigram, etc. information.

3 Results

We have tested our three tiered method on the problem of recognizing sequences of hand
spelling gestures.

Framewise clustering.We first evaluate the low level representation of single images and
intermediate clustering algorithms. A training set of3015 images are used. The frame-to-
frame motion energy is used to label images as static or dynamic. For spectral clustering,
3 ∼ 4 restarts from both the dynamic and static set are sufficient to cover all the modes in
the training set. Then, temporal smoothing is employed and a Gaussian density is calculated
for each cluster in a10 dimensional subspace of the LDA projection. As a result,24 clusters
are obtained which contain16 static and8 dynamic modes. Figure 3 shows5 frames
closest to the mean of the probability density of cluster1, 3, 19, 5, 13, 8, 21, 15, 6, 12. It
can be seen that clustering results are insensitive to artifacts of skin segmentation. From
Figure 3, it is also clear that dynamic modes have significantly larger determinants than
static ones. The study of the eigenvalues of covariance matrices shows that their super-
ellipsoid shapes are expanded within2 ∼ 3 dimensions or6 ∼ 8 dimensions for static
or dynamic clusters. Taken together, this means that static clusters are quite tight, while
dynamic clusters contain much more in-class variation. From Figure 4 (c), dynamic clusters
gain more weight during the smoothing process incorporating the temporal constraint and
subsequent GMM refinement.

Figure 3: Image clustering results after low and intermediate level processing.

Action recognition and segmentation.For testing images, we first project their feature
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Figure 4: (a) Affinity matrix of 3015 images. (b) Affinity matrices of cluster centoids (from upper
left to lower right) after spectral clustering, temporal smoothing and GMM. (c) Labelling results of
3015 images (red squares are frames whose labels changed with smoothing process after spectral
clustering). (d) The similarity matrix of segmented hand gestures. The letters are labels of gestures.

vectors into the LDA subspace. Then, the GMM is used to compute their weights with
respect to each cluster. We manually choose 100 sequences for testing purposes, and com-
pute their similarities with respect to a library of 25 gestures. The length of the action
sequences was9 ∼ 38 frames. The temporal scale of actions in the same category ranged
from 1 to 2.4. The results were recognition rates of90% and93% without/with temporal
smoothing (Equation 2). Including the top three candidates, the recognition rates increase
to 94% and96%, respectively. We also used the learned model and a sliding window with
temporal scaling to segment actions from a 6034 frame video sequence containing dynamic
gestures and static hand postures. The similarity matrices among123 actions found in the
video is shown in Figure 4 (d).106 out of123 actions (86.2%) are correctly segmented and
recognized.

Integrating motion information. As noted previously, our method cannot distinguish
opening/closing hand gestures without temporally subdividing histograms. An alternative
solution is to integrate motion information5 between frames. Motion feature vectors are
also clustered, which results a joint (appearance and motion) histogram model for actions.
We assume independence of the data and therefore simple contatenate these two histograms
into a single action representation. From our preliminary experiments, both motion in-
tegration and histogram subdivision are comparably effective to recognize gestures with
opposite direction.

4 Conclusion and Discussion

We have presented a method for classifying the motion of articulated gestures using
LDA/GMM-based clustering methods and a histogram-based model of temporal evolution.
Using this model, we have obtained extremely good recognition results using a relatively
coarse representation of appearance and motion in images.

There are mainly three methods to improve the performance of histogram-based classi-
fication, i.e., adaptive binning, adaptive subregion, and adaptive weighting [21]. In our
approach, adaptive binning of the histogram is automatically learned by our clustering
algorithms; adaptive subregion is realized by subdividing action sequences to enrich the
histogram’s descriptive capacity in the temporal domain; adaptive weighting is achieved
from the trained weights of Gaussian kernels in GMM.

Our future work will focus on building a larger hand action database containing50 ∼ 100

5Motion information can be extracted by first aligning two hand blobs, subtracting two skin-color
density masses, then using the same circular histogram in section 2.1 to extract a feature vector for
positive and negative density residues respectively. Another simple way is to subtract two frames’
feature vectors directly.



categories for more extensive testing, and on extending the representation to include other
types of image information (e.g. contour information). Also, by finding an effective fore-
ground segmentation module, we intend to apply the same methods to other applications
such as recognizing stylized human body motion.
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