
Worst-Case Analysis of Selective Sampling for
Linear-Threshold Algorithms∗

Nicolò Cesa-Bianchi
DSI, University of Milan

cesa-bianchi@dsi.unimi.it

Claudio Gentile
Università dell’Insubria

gentile@dsi.unimi.it

Luca Zaniboni
DTI, University of Milan

zaniboni@dti.unimi.it

Abstract

We provide a worst-case analysis of selective sampling algorithms for
learning linear threshold functions. The algorithms considered in this
paper are Perceptron-like algorithms, i.e., algorithms which can be effi-
ciently run in any reproducing kernel Hilbert space. Our algorithms ex-
ploit a simple margin-based randomized rule to decide whether to query
the current label. We obtain selective sampling algorithms achieving on
average the same bounds as those proven for their deterministic coun-
terparts, but using much fewer labels. We complement our theoretical
findings with an empirical comparison on two text categorization tasks.
The outcome of these experiments is largely predicted by our theoreti-
cal results: Our selective sampling algorithms tend to perform as good
as the algorithms receiving the true label after each classification, while
observing in practice substantially fewer labels.

1 Introduction

In this paper, we consider learning binary classification tasks with partially labelled data
via selective sampling. A selective sampling algorithm (e.g., [3, 12, 7] and references
therein) is an on-line learning algorithm that receives a sequence of unlabelled instances,
and decides whether or not to query the label of the current instance based on instances
and labels observed so far. The idea is to let the algorithm determine which labels are most
useful to its inference mechanism, so that redundant examples can be discarded on the fly
and labels can be saved.
The overall goal of selective sampling is to fit real-world scenarios where labels are scarce
or expensive. As a by now classical example, in a web-searching task, collecting web pages
is a fairly automated process, but assigning them a label (a set of topics) often requires time-
consuming and costly human expertise. In these cases, it is clearly important to devise
learning algorithms having the ability to exploit the label information as much as possible.
Furthermore, when we consider kernel-based algorithms [23, 9, 21], saving labels directly
implies saving support vectors in the currently built hypothesis, which, in turn, implies
saving running time in both training and test phases.
Many algorithms have been proposed in the literature to cope with the broad task of learning
with partially labelled data, working under both probabilistic and worst-case assumptions,
for either on-line or batch settings. These range from active learning algorithms [8, 22],

∗The authors gratefully acknowledge partial support by the PASCAL Network of Excellence un-
der EC grant no. 506778. This publication only reflects the authors’ views.

to the query-by-committee algorithm [12], to the adversarial “apple tasting” and label-
efficient algorithms investigated in [16] and [17, 6], respectively. In this paper we present
a worst-case analysis of two Perceptron-like selective sampling algorithms. Our analysis
relies on and contributes to a well-established way of studying linear-threshold algorithms
within the mistake bound model of on-line learning (e.g., [18, 15, 11, 13, 14, 5]). We
show how to turn the standard versions of the (first-order) Perceptron algorithm [20] and
the second-order Perceptron algorithm [5] into selective sampling algorithms exploiting a
randomized margin-based criterion (inspired by [6]) to select labels, while preserving in
expectation the same mistake bounds.
In a sense, this line of research complements an earlier work on selective sampling [7],
where a second-order kind of algorithm was analyzed under precise stochastic assumptions
about the way data are generated. This is exactly what we face in this paper: we avoid
any assumption whatsoever on the data-generating process, but we are still able to prove
meaningful statements about the label efficiency features of our algorithms.
In order to give some empirical evidence for our analysis, we made some experiments
on two medium-size text categorization tasks. These experiments confirm our theoretical
results, and show the effectiveness of our margin-based label selection rule.

2 Preliminaries, notation
An example is a pair (x, y), where x ∈ R

n is an instance vector and y ∈ {−1,+1}
is the associated binary label. A training set S is any finite sequence of examples S =
(x1, y1), . . . , (xT , yT) ∈ (Rn × {−1,+1})T . We say that S is linearly separable if there
exists a vector u ∈ R

n such that ytu
>

xt > 0 for t = 1, . . . , T .

We consider the following selective sampling variant of a standard on-line learning model
(e.g., [18, 24, 19, 15] and references therein). This variant has been investigated in [6]
for a version of Littlestone’s Winnow algorithm [18, 15]. Learning proceeds on-line in
a sequence of trials. In the generic trial t the algorithm receives instance xt from the
environment, outputs a prediction ŷt ∈ {−1,+1} about the label yt associated with xt,
and decides whether or not to query the label yt. No matter what the algorithm decides,
we say that the algorithm has made a prediction mistake if ŷt 6= yt. We measure the
performance of the algorithm by the total number of mistakes it makes on S (including
the trials where the true label remains hidden). Given a comparison class of predictors, the
goal of the algorithm is to bound the amount by which this total number of mistakes differs,
on an arbitrary sequence S, from some measure of the performance of the best predictor in
hindsight within the comparison class. Since we are dealing with (zero-threshold) linear-
threshold algorithms, it is natural to assume the comparison class be the set of all (zero-
threshold) linear-threshold predictors, i.e., all (possibly normalized) vectors u ∈ R

n. Given
a margin value γ > 0, we measure the performance of u on S by its cumulative hinge loss1

[11, 13]
∑T

t=1 Dγ(u; (xt, yt)), where Dγ(u; (xt, yt)) = max{0, γ − ytu
>

xt}.

Broadly speaking, the goal of the selective sampling algorithm is to achieve the best bound
on the number of mistakes with as few queried labels as possible. As in [6], our algorithms
exploit a margin-based randomized rule to decide which labels to query. Thus, our mistake
bounds are actually worst-case over the training sequence and average-case over the inter-
nal randomization of the algorithms. All expectations occurring in this paper are w.r.t. this
randomization.

3 The algorithms and their analysis
As a simple example, we start by turning the classical Perceptron algorithm [20] into a
worst-case selective sampling algorithm. The algorithm, described in Figure 1, has a real

1The cumulative hinge loss measures to what extent hyperplane u separates S at margin γ. This
is also called the soft margin in the SVM literature [23, 9, 21].

ALGORITHM Selective sampling Perceptron algorithm
Parameter b > 0.
Initialization: v0 = 0; k = 1.
For t = 1, 2, . . . do:

1. Get instance vector xt ∈ R
n and set rt = v

>
k−1x̂t, with x̂t = xt/||xt||;

2. predict with ŷt = SGN(rt) ∈ {−1,+1};

3. draw a Bernoulli random variable Zt ∈ {0, 1} of parameter b
b+|rt|

;

4. if Zt = 1 then:
(a) ask for label yt ∈ {−1,+1},
(b) if ŷt 6= yt then update as follows: vk = vk−1 +ytx̂t, k ← k +1.

Figure 1: The selective sampling (first-order) Perceptron algorithm.

parameter b > 0 which might be viewed as a noise parameter, ruling the extent to which
a linear threshold model fits the data at hand. The algorithm maintains a vector v ∈ R

n

(whose initial value is zero). In each trial t the algorithm observes an instance vector
xt ∈ R

n and predicts the binary label yt through the sign of the margin value rt = v
>
k−1x̂t.

Then the algorithm decides whether to ask for the label yt through a simple randomized
rule: a coin with bias b/(b + |rt|) is flipped; if the coin turns up heads (Zt = 1 in Figure
1) then the label yt is revealed. Moreover, on a prediction mistake (ŷt 6= yt) the algorithm
updates vector vk according to the usual Perceptron additive rule. On the other hand, if
either the coin turns up tails or ŷt = yt no update takes place. Notice that k is incremented
only when an update occurs. Thus, at the end of trial t, subscript k counts the number
of updates made so far (plus one). In the following theorem we prove that our selective
sampling version of the Perceptron algorithm can achieve, in expectation, the same mistake
bound as the standard Perceptron’s using fewer labels. See Remark 1 for a discussion.

Theorem 1 Let S = ((x1, y1), (x2, y2), . . . , (xT , yT)) ∈ (Rn × {−1, +1})T be any se-
quence of examples and UT be the (random) set of update trials for the algorithm in Figure
1 (i.e, the set of trials t ≤ T such that ŷt 6= yt and Zt = 1). Then the expected number of
mistakes made by the algorithm in Figure 1 is upper bounded by

infγ>0 infu∈Rn

(

2b+1
2b E

[

∑

t∈UT

1
γ Dγ(u; (x̂t, yt))

]

+ (2b+1)2

8b
||u||2

γ2

)

.

The expected number of labels queried by the algorithm is equal to
∑T

t=1 E

[

b
b+|rt|

]

.

Proof. Let Mt be the Bernoulli variable which is one iff ŷt 6= yt and denote by k(t) the
value of the update counter k in trial t just before the update k ← k + 1. Our goal is then

to bound E

[

∑T
t=1 Mt

]

from above. Consider the case when trial t is such that Mt Zt = 1.

Then one can verify by direct inspection that choosing rt = v
>
k(t−1)x̂t (as in Figure 1)

yields yt u
>

x̂t − yt rt = 1
2 ||u − vk(t−1)||

2 − 1
2 ||u − vk(t)||

2 + 1
2 ||vk(t−1) − vk(t)||

2,
holding for any u ∈ R

n. On the other hand, if trial t is such that Mt Zt = 0 we have
vk(t−1) = vk(t). Hence we conclude that the equality

Mt Zt

(

yt u
>

x̂t − yt rt

)

= 1
2 ||u− vk(t−1)||

2 − 1
2 ||u− vk(t)||

2 + 1
2 ||vk(t−1) − vk(t)||

2

actually holds for all trials t. We sum over t = 1, . . . , T while observing that Mt Zt = 1
implies both ||vk(t−1)−vk(t)|| = 1 and yt rt ≤ 0. Recalling that vk(0) = 0 and rearranging
we obtain ∑T

t=1 Mt Zt

(

yt u
>

x̂t + |rt| −
1
2

)

≤ 1
2 ||u||

2, ∀u ∈ R
n. (1)

Now, since the previous inequality holds for any comparison vector u ∈ R
n, we stretch u

to b+1/2
γ u, being γ > 0 a free parameter. Then, by the very definition of Dγ(u; (x̂t, yt)),

b+1/2
γ yt u

>
x̂t ≥

b+1/2
γ (γ −Dγ(u; (x̂t, yt))) ∀γ > 0. Plugging into (1) and rearranging,

∑T
t=1 Mt Zt(b + |rt|) ≤ (b + 1

2)
∑

t∈UT

1
γ Dγ(u; (x̂t, yt)) + (2b+1)2

8γ2 ||u||2 . (2)

ALGORITHM Selective sampling second-order Perceptron algorithm
Parameter b > 0.
Initialization: A0 = I; v0 = 0; k = 1.
For t = 1, 2, . . . do:

1. Get xt ∈ R
n and set rt = v

>
k−1(Ak−1 + x̂tx̂

>
t)−1

x̂t, x̂t = xt/||xt||;

2. predict with ŷt = SGN(rt) ∈ {−1,+1};
3. draw a Bernoulli random variable Zt ∈ {0, 1} of parameter

b

b + |rt|+
1
2r2

t

(

1 + x̂
>
t A−1

k−1x̂t

) ; (3)

4. if Zt = 1 then:
(a) ask for label yt ∈ {−1,+1},
(b) if ŷt 6= yt then update as follows:

vk = vk−1 + ytx̂t, Ak = Ak−1 + x̂tx̂
>
t , k ← k + 1.

Figure 2: The selective sampling second-order Perceptron algorithm.

From Figure 1 we see that E[Zt | Z1, . . . , Zt−1] = b
b+|rt|

. Therefore, taking expectations
on both sides of (2),

E

[

∑T
t=1 Mt Zt(b + |rt|)

]

=
∑T

t=1 E

[

E

[

Mt Zt

(

b + |rt|
)

| Z1, . . . , Zt−1

]]

=
∑T

t=1 E

[

Mt

(

b + |rt|
)

E

[

Zt | Z1, . . . , Zt−1

]]

= E

[

∑T
t=1 Mt

]

b.

Replacing back into (2) and dividing by b proves the claimed bound on E

[

∑T
t=1 Mt

]

.
The value of E

[

∑T
t=1 Zt

]

(the expected number of queried labels) trivially follows from

E

[

∑T
t=1 Zt

]

= E

[

∑T
t=1 E[Zt | Z1, . . . , Zt−1]

]

. 2

We now consider the selective sampling version of the second-order Perceptron algorithm,
as defined in [5]. See Figure 2. Unlike the first-order algorithm, the second-order al-
gorithm mantains a vector v ∈ R

n and a matrix A ∈ R
n × R

n (whose initial value is
the identity matrix I). The algorithm predicts through the sign of the margin quantity
rt = v

>
k−1(Ak−1 + x̂tx̂

>
t)−1

x̂t, and decides whether to ask for the label yt through a
randomized rule similar to the one in Figure 1. The analysis follows the same pattern as
the proof of Theorem 1. A key step in this analysis is a one-trial progress equation de-
veloped in [10] for a regression framework. See also [4]. Again, the comparison between
the second-order Perceptron’s bound and the one contained in Theorem 2 reveals that the
selective sampling algorithm can achieve, in expectation, the same mistake bound (see Re-
mark 1) using fewer labels.

Theorem 2 Using the notation of Theorem 1, the expected number of mistakes made by
the algorithm in Figure 2 is upper bounded by

inf
γ>0

inf
u∈Rn

(

E

[

∑

t∈UT

1

γ
Dγ(u; (x̂t, yt))

]

+
b

2γ2
u
>

E
[

Ak(T)

]

u +
1

2b

n
∑

i=1

E ln (1 + λi)

)

,

where λ1, . . . , λn are the eigenvalues of the (random) correlation matrix
∑

t∈UT
x̂tx̂

>
t and

Ak(T) = I +
∑

t∈UT
x̂tx̂

>
t (thus 1+λi is the i-th eigenvalue of Ak(T)). The expected num-

ber of labels queried by the algorithm is equal to
∑T

t=1 E

[

b

b+|rt|+
1
2 r2

t

(

1+x̂
>

t
A−1

k−1x̂t

)

]

.

Proof sketch. The proof proceeds along the same lines as the proof of Theorem 1. Thus
we only emphasize the main differences. In addition to the notation given there, we define

Ut as the set of update trials up to time t, i.e., Ut = {i ≤ t : Mi Zi = 1}, and Rt as the
(random) function Rt(u) = 1

2 ||u||
2 +

∑

i∈Ut

1
2 (yi − u

>
x̂i)

2. When trial t is such that
Mt Zt = 1 we can exploit a result contained in [10] for linear regression (proof of Theorem
3 therein), where it is essentially shown that choosing rt = v

>
k−1A

−1
k(t)x̂t (as in Figure 2)

yields
1
2 (yt − rt)

2 = inf
u∈Rn

Rt(u)− inf
u∈Rn

Rt−1(u) + 1
2

(

x̂
>
t A−1

k(t)x̂t − r2
t x̂

>
t A−1

k(t)−1x̂t

)

. (4)

On the other hand, if trial t is such that Mt Zt = 0 we have Ut = Ut−1, thus
infu∈Rn Rt−1(u) = infu∈Rn Rt(u). Hence the equality

1
2Mt Zt

(

(yt − rt)
2 + r2

t x̂
>
t A−1

k(t)−1x̂t

)

= inf
u∈Rn

Rt(u)− inf
u∈Rn

Rt−1(u) + 1
2Mt Zt x̂

>
t A−1

k(t)x̂t (5)

holds for all trials t. We sum over t = 1, . . . , T , and observe that by definition RT (u) =
1
2 ||u||

2 +
∑T

t=1
Mt Zt

2 (yi − u
>

x̂i)
2 and R0(u) = 1

2 ||u||
2 (thus infu∈Rn R0(u) = 0).

After some manipulation one can see that (5) implies
∑T

t=1 Mt Zt

(

yt u
>

x̂t + |rt|+
1
2r2

t (1 + x̂
>
t A−1

k(t)−1x̂t)
)

≤ 1
2u

>Ak(T)u +
∑T

t=1
1
2Mt Zt x̂

>
t A−1

k(t)x̂t, (6)

holding for any u ∈ R
n. We continue by elaborating on (6). First, as in [4, 10, 5], we

upper bound the quadratic terms x̂
>
t A−1

k(t)x̂t by2 ln
det(Ak(t))

det(Ak(t)−1)
. This gives

∑T
t=1

1
2Mt Zt x̂

>
t A−1

k(t)x̂t ≤
1
2 ln

det(Ak(T))

det(A0)
= 1

2

∑n
i=1 ln (1 + λi) .

Second, as in the proof of Theorem 1, we stretch the comparison vector u ∈ R
n to b

γ u and
introduce hinge loss terms. We obtain:

∑T
t=1Mt Zt

(

b + |rt|+
1
2r2

t (1 + x̂
>
t A−1

k(t)−1x̂t)
)

≤ b
∑

t∈UT

1
γ Dγ(u; (x̂t, yt)) + b2

2γ2 u
>Ak(T)u + 1

2

∑n
i=1 ln (1 + λi). (7)

The bounds on E

[

∑T
t=1 Mt

]

and E

[

∑T
t=1 Zt

]

can now be obtained by following the

proof of Theorem 1. 2

Remark 1 The bounds in Theorems 1 and 2 depend on the choice of parameter b. As a
matter of fact, the optimal tuning of this parameter is easily computed. Let us set for brevity

D̂γ(u;S) = E

[

∑

t∈UT

1
γ Dγ(u; (x̂t, yt))

]

. Choosing3 b = 1
2

√

1 + 4γ2

||u||2 D̂γ(u;S) in

Theorem 1 gives the following bound on the expected number of mistakes:

infu∈Rn

(

D̂γ(u;S) + ||u||2

2γ2 + ||u||
2γ

√

D̂γ(u;S) + ||u||2

4γ2

)

. (8)

This is an expectation version of the mistake bound for the standard (first-order) Perceptron
algorithm [14]. Notice, that in the special case when the data are linearly separable with
margin γ∗ the optimal tuning simplifies to b = 1/2 and yields the familiar Perceptron

bound ||u||2/(γ∗)2. On the other hand, if we set b = γ

√

∑

n

i=1 E ln(1+λi)

u>E[Ak(T)]u
in Theorem 2 we

are led to the bound

infu∈Rn

(

D̂γ(u;S) + 1
γ

√

(u>E
[

Ak(T)

]

u)
∑n

i=1 E ln (1 + λi)
)

, (9)

2Here det denotes the determinant.
3Clearly, this tuning relies on information not available ahead of time, since it depends on the

whole sequence of examples. The same holds for the choice of b giving rise to (9).

which is an expectation version of the mistake bound for the (deterministic) second-order
Perceptron algorithm, as proven in [5]. As it turns out, (8) and (9) might be even sharper
than their deterministic counterparts. In fact, the set of update trials UT is on average
significantly smaller than the one for the deterministic algorithms. This tends to shrink the
three terms D̂γ(u;S), u

>
E
[

Ak(T)

]

u, and
∑n

i=1 E ln (1 + λi), the main ingredients
of the selective sampling bounds.

Remark 2 Like any Perceptron-like algorithm, the algorithms in Figures 1 and 2 can be
efficiently run in any given reproducing kernel Hilbert space (e.g., [9, 21, 23]), just by
turning them into equivalent dual forms. This is actually what we did in the experiments
reported in the next section.

4 Experiments
The empirical evaluation of our algorithms was carried out on two datasets of free-text doc-
uments. The first dataset is made up of the first (in chronological order) 40, 000 newswire
stories from Reuters Corpus Volume 1 (RCV1) [2]. The resulting set of examples was
classified over 101 categories. The second dataset is a specific subtree of the OHSUMED
corpus of medical abstracts [1]: the subtree rooted in “Quality of Health Care” (MeSH
code N05.712). From this subtree we randomly selected a subset of 40, 000 abstracts. The
resulting number of categories was 94. We performed a standard preprocessing on the
datasets – details will be given in the full paper.
Two kinds of experiments were made on each dataset. In the first experiment we compared
the selective sampling algorithms in Figures 1 and 2 (for different values of b), with the
standard second-order Perceptron algorithm (requesting all labels). Such a comparison
was devoted to studying the extent to which a reduced number of label requests might
lead to performance degradation. In the second experiment, we compared variable vs.
constant label-request rate. That is, we fixed a few values for parameter b, run the selective
sampling algorithm in Figure 2, and computed the fraction of labels requested over the
training set. Call this fraction p̂ = p̂(b). We then run a second-order selective sampling
algorithm with (constant) label request probability equal to p̂ (independent of t). The aim
of this experiment was to investigate the effectiveness of a margin-based selective sampling
criterion, as opposed to a random one.
Figure 3 summarizes the results we obtained on RCV1 (the results on OHSUMED turned
out to be similar, and are therefore omitted from this paper). For the purpose of this
graphical representation, we selected the 50 most frequent categories from RCV1, those
with frequency larger than 1%. The standard second-order algorithm is denoted by 2ND-
ORDER-ALL-LABELS, the selective sampling algorithms in Figures 1 and 2 are denoted by
1ST-ORDER and 2ND-ORDER, respectively, whereas the second-order algorithm with con-
stant label request is denoted by 2ND-ORDER-FIXED-BIAS.4 As evinced by Figure 3(a),
there is a range of values for parameter b that makes 2ND-ORDER achieve almost the same
performance as 2ND-ORDER-ALL-LABELS, but with a substantial reduction in the total
number of queried labels.5 In Figure 3(b) we report the results of running 2ND-ORDER,
1ND-ORDER and 2ND-ORDER-FIXED-BIAS after choosing values for b that make the av-
erage F-measure achieved by 2ND-ORDER just slightly larger than those achieved by the
other two algorithms. We then compared the resulting label request rates and found 2ND-
ORDER largely best among the three algorithms (its instantaneous label rate after 40, 000
examples is less than 19%). We made similar experiments for specific categories in RCV1.
On the most frequent ones (such as category 70 – Figure 3(c)) this behavior gets empha-
sized. Finally, in Figure 3(d) we report a direct macroaveraged F-measure comparison

4We omitted to report on the first-order algorithms 1ST-ORDER-ALL-LABELS and 1ST-ORDER-
FIXED-BIAS, since they are always outperformed by their corresponding second-order algorithms.

5Notice that the figures are plotting instantaneous label rates, hence the overall fraction of queried
labels is obtained by integration.

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2400020000160001200080004000

F
-m

ea
su

re
 &

 L
ab

el
-r

eq
ue

st

Training examples

2ND ORDER: Parameter ’b’ variations

F-measure 2ND-ORDER-ALL-LABELS
F-measure 2ND-ORDER - b=0.025
F-measure 2ND-ORDER - b=0.05

F-measure 2ND-ORDER - b=0.075
Label-request 2ND-ORDER - b=0.025
Label-request 2ND-ORDER - b=0.05

Label-request 2ND-ORDER - b=0.075

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

2400020000160001200080004000

F
-m

ea
su

re
 &

 L
ab

el
-r

eq
ue

st

Training examples

Selective Sampling comparison on RCV1 Dataset

F-measure 2ND-ORDER - b=0.025
F-measure 2ND-ORDER-FIXED-BIAS - p=0.489

F-measure 1ST-ORDER - b=1.0
Label-request 2ND-ORDER - b=0.025

Label-request 2ND-ORDER-FIXED-BIAS - p=0.489
Label-request 1ST-ORDER - b=1.0

(a) (b)

 0.2

 0.4

 0.6

 0.8

 1

 1.2

2400020000160001200080004000

F
-m

ea
su

re
 &

 L
ab

el
-r

eq
ue

st

Training examples

Selective Sampling comparison on category 70 of RCV1 Dataset

F-measure 2ND-ORDER - b=0.025
F-measure 2ND-ORDER-FIXED-BIAS - p=0.489

F-measure 1ST-ORDER - b=1.0
Label-request 2ND-ORDER - b=0.025

Label-request 2ND-ORDER-FIXED-BIAS - p=0.489
Label-request 1ST-ORDER - b=1.0

 0.56

 0.58

 0.6

 0.62

 0.64

 0.66

 0.68

 0.7

 0.72

 0.74

0.4890.4250.3360.2110.104

F
-m

ea
su

re
Label-request

2ND-ORDER: Margin based vs Fixed bias

2ND-ORDER
2ND-ORDER-FIXED-BIAS

(c) (d)

Figure 3: Instantaneous F-measure and instantaneous label-request rate on the RCV1
dataset. We solved a binary classification problem for each class and then (macro)averaged
the results. All curves tend to flatten after about 24, 000 examples (out of 40, 000). (a)
Instantaneous macroaveraged F-measure of 2ND-ORDER (for three values of b) and their
corresponding label-request curves. For the very sake of comparison, we also included
the F-measure of 2ND-ORDER-ALL-LABELS. (b) Comparison among 2ND-ORDER, 1ST-
ORDER and 2ND-ORDER-FIXED-BIAS. (c) Same comparison on a specific category. (d)
F-measure of 2ND-ORDER vs. F-measure of 2ND-ORDER-FIXED-BIAS for 5 values of pa-
rameter b, after 40, 000 examples.

between 2ND-ORDER and 2ND-ORDER-FIXED-BIAS for 5 values of b. On the x-axis are
the resulting 5 values of the constant bias p̂(b). As expected, 2ND-ORDER outperforms
2ND-ORDER-FIXED-BIAS, though the difference between the two tends to shrink as b (or,
equivalently, p̂(b)) gets larger.

5 Conclusions and open problems
We have introduced new Perceptron-like selective sampling algorithms for learning linear-
threshold functions. We analyzed these algorithms in a worst-case on-line learning set-
ting, providing bounds on both the expected number of mistakes and the expected num-
ber of labels requested. Our theoretical investigation naturally arises from the traditional
way margin-based algorithms are analyzed in the mistake bound model of on-line learning
[18, 15, 11, 13, 14, 5]. This investigation suggests that our worst-case selective sampling
algorithms can achieve on average the same accuracy as that of their more standard rel-
atives, but allowing a substantial label saving. These theoretical results are corroborated
by our empirical comparison on textual data, where we have shown that: (1) the selective
sampling algorithms tend to be unaffected by observing less and less labels; (2) if we fix
ahead of time the total number of label observations, the margin-driven way of distributing
these observations over the training set is largely more effective than a random one.

We close by two simple open questions. (1) Our selective sampling algorithms depend on a
scale parameter b having a significant influence on their practical performance. Is there any

principled way of adaptively tuning b so as to reduce the algorithms’ sensitivity to tuning
parameters? (2) Theorems 1 and 2 do not make any explicit statement about the number of
weight updates/support vectors computed by our selective sampling algorithms. We would
like to see a theoretical argument that enables us to combine the bound on the number of
mistakes with that on the number of labels, giving rise to a meaningful upper bound on the
number of updates.

References
[1] The OHSUMED test collection. URL: medir.ohsu.edu/pub/ohsumed/.
[2] Reuters corpus volume 1. URL: about.reuters.com/researchandstandards/corpus/.
[3] Atlas, L., Cohn, R., and Ladner, R. (1990). Training connectionist networks with queries and

selective sampling. In NIPS 2. MIT Press.
[4] Azoury, K.S., and Warmuth, M.K. (2001). Relative loss bounds for on-line density estimation

with the exponential familiy of distributions. Machine Learning, 43(3):211–246, 2001.
[5] Cesa-Bianchi, N., Conconi, A., and Gentile, C. (2002). A second-order Perceptron algorithm.

In Proc. 15th COLT, pp. 121–137. LNAI 2375, Springer.
[6] Cesa-Bianchi, N. Lugosi, G., and Stoltz, G. (2004). Minimizing Regret with Label Efficient

Prediction In Proc. 17th COLT, to appear.
[7] Cesa-Bianchi, N., Conconi, A., and Gentile, C. (2003). Learning probabilistic linear-threshold

classifiers via selective sampling. In Proc. 16th COLT, pp. 373–386. LNAI 2777, Springer.
[8] Campbell, C., Cristianini, N., and Smola, A. (2000). Query learning with large margin classi-

fiers. In Proc. 17th ICML, pp. 111–118. Morgan Kaufmann.
[9] Cristianini, N., and Shawe-Taylor, J. (2001). An Introduction to Support Vector Machines.

Cambridge University Press.
[10] Forster, J. On relative loss bounds in generalized linear regression. (1999). In Proc. 12th Int.

Symp. FCT, pp. 269–280, Springer.
[11] Freund, Y., and Schapire, R. E. (1999). Large margin classification using the perceptron algo-

rithm. Machine Learning, 37(3), 277–296.
[12] Freund, Y., Seung, S., Shamir, E., and Tishby, N. (1997). Selective sampling using the query

by committee algorithm. Machine Learning, 28(2/3):133–168.
[13] Gentile, C. & Warmuth, M. (1998). Linear hinge loss and average margin. In NIPS 10, MIT

Press, pp. 225–231.
[14] Gentile, C. (2003). The robustness of the p-norm algorithms. Machine Learning, 53(3), 265–

299.
[15] Grove, A.J., Littlestone, N., & Schuurmans, D. (2001). General convergence results for linear

discriminant updates. Machine Learning, 43(3), 173–210.
[16] Helmbold, D.P., Littlestone, N. and Long, P.M. (2000). Apple tasting. Information and Compu-

tation, 161(2), 85–139.
[17] Helmbold, D.P., and Panizza, S. (1997). Some label efficient learning results. In Proc. 10th

COLT, pp. 218–230. ACM Press.
[18] Littlestone, N. (1988). Learning quickly when irrelevant attributes abound: a new linear-

threshold algorithm. Machine Learning, 2(4), 285–318.
[19] Littlestone, N., and Warmuth, M.K. (1994). The weighted majority algorithm. Information and

Computation, 108(2), 212–261.
[20] F. Rosenblatt. (1958). The Perceptron: A probabilistic model for information storage and orga-

nization in the brain. Psychol. Review, 65, 386–408.
[21] Schölkopf, B., and Smola, A. (2002). Learning with kernels. MIT Press, 2002.
[22] Tong, S., and Koller, D. (2000). Support vector machine active learning with applications to

text classification. In Proc. 17th ICML. Morgan Kaufmann.
[23] Vapnik, V.N. (1998). Statistical Learning Theory. Wiley.
[24] Vovk, V. (1990). Aggregating strategies. Proc. 3rd COLT, pp. 371–383. Morgan Kaufmann.

