
Incremental Algorithms
for Hierarchical Classification∗

Nicolò Cesa-Bianchi
Università di Milano

Milano, Italy

Claudio Gentile
Università dell’Insubria

Varese, Italy

Andrea Tironi Luca Zaniboni
Università di Milano

Crema, Italy

Abstract
We study the problem of hierarchical classification when labels corre-
sponding to partial and/or multiple paths in the underlying taxonomy are
allowed. We introduce a new hierarchical loss function, the H-loss, im-
plementing the simple intuition that additional mistakes in the subtree of
a mistaken class should not be charged for. Based on a probabilistic data
model introduced in earlier work, we derive the Bayes-optimal classifier
for the H-loss. We then empirically compare two incremental approx-
imations of the Bayes-optimal classifier with a flat SVM classifier and
with classifiers obtained by using hierarchical versions of the Perceptron
and SVM algorithms. The experiments show that our simplest incremen-
tal approximation of the Bayes-optimal classifier performs, after just one
training epoch, nearly as well as the hierarchical SVM classifier (which
performs best). For the same incremental algorithm we also derive an
H-loss bound showing, when data are generated by our probabilistic data
model, exponentially fast convergence to the H-loss of the hierarchical
classifier based on the true model parameters.

1 Introduction and basic definitions

We study the problem of classifying data in a given taxonomy of labels, where the tax-
onomy is specified as a tree forest. We assume that every data instance is labelled with a
(possibly empty) set of class labels called multilabel, with the only requirement that mul-
tilabels including some node i in the taxonony must also include all ancestors of i. Thus,
each multilabel corresponds to the union of one or more paths in the forest, where each
path must start from a root but it can terminate on an internal node (rather than a leaf).

Learning algorithms for hierarchical classification have been investigated in, e.g., [8, 9, 10,
11, 12, 14, 15, 17, 20]. However, the scenario where labelling includes multiple and partial
paths has received very little attention. The analysis in [5], which is mainly theoretical,
shows in the multiple and partial path case a 0/1-loss bound for a hierarchical learning
algorithm based on regularized least-squares estimates.
In this work we extend [5] in several ways. First, we introduce a new hierarchical loss func-
tion, the H-loss, which is better suited than the 0/1-loss to analyze hierarchical classification
tasks, and we derive the corresponding Bayes-optimal classifier under the parametric data
model introduced in [5]. Second, considering various loss functions, including the H-loss,
we empirically compare the performance of the following three incremental kernel-based

∗This work was supported in part by the PASCAL Network of Excellence under EC grant no.
506778. This publication only reflects the authors’ views.

algorithms: 1) a hierarchical version of the classical Perceptron algorithm [16]; 2) an ap-
proximation to the Bayes-optimal classifier; 3) a simplified variant of this approximation.
Finally, we show that, assuming data are indeed generated according to the parametric
model mentioned before, the H-loss of the algorithm in 3) converges to the H-loss of the
classifier based on the true model parameters. Our incremental algorithms are based on
training linear-threshold classifiers in each node of the taxonomy. A similar approach has
been studied in [8], though their model does not consider multiple-path classifications as
we do.
Incremental algorithms are the main focus of this research, since we strongly believe that
they are a key tool for coping with tasks where large quantities of data items are generated
and the classification system needs to be frequently adjusted to keep up with new items.
However, we found it useful to provide a reference point for our empirical results. Thus we
have also included in our experiments the results achieved by nonincremental algorithms.
In particular, we have chosen a flat and a hierarchical version of SVM [21, 7, 19], which
are known to perform well on the textual datasets considered here.
We assume data elements are encoded as real vectors x ∈ R

d which we call instances.
A multilabel for an instance x is any subset of the set {1, . . . , N} of all labels/classes,
including the empty set. We denote the multilabel associated with x by a vector y =
(y1, . . . , yN) ∈ {0, 1}N , where i belongs to the multilabel of x if and only if yi = 1.
A taxonomy G is a forest whose trees are defined over the set of labels. A multilabel
y ∈ {0, 1}N is said to respect a taxonomy G if and only if y is the union of one or more
paths in G, where each path starts from a root but need not terminate on a leaf. See Figure 1.
We assume the data-generating mechanism produces examples (x,y) such that y respects
some fixed underlying taxonomy G with N nodes. The set of roots in G is denoted by
root(G). We use par(i) to denote the unique parent of node i, anc(i) to denote the set of
ancestors of i, and sub(i) to denote the set of nodes in the subtree rooted at i (including i).
Finally, given a predicate φ over a set Ω, we will use {φ} to denote both the subset of Ω
where φ is true and the indicator function of this subset.

2 The H-loss
Though several hierarchical losses have been proposed in the literature (e.g., in [11, 20]), no
one has emerged as a standard yet. Since hierarchical losses are defined over multilabels,
we start by considering two very simple functions measuring the discrepancy between mul-
tilabels ŷ = (ŷ1, ..., ŷN) and y = (y1, ..., yN): the 0/1-loss `0/1(ŷ,y) = {∃i : ŷi 6= yi}
and the symmetric difference loss `∆(ŷ,y) = {ŷ1 6= y1} + . . . + {ŷN 6= yN}.
There are several ways of making these losses depend on a given taxonomy G. In this
work, we follow the intuition “if a mistake is made at node i, then further mistakes made
in the subtree rooted at i are unimportant”. That is, we do not require the algorithm be able
to make fine-grained distinctions on tasks when it is unable to make coarse-grained ones.
For example, if an algorithm failed to label a document with the class SPORTS, then the
algorithm should not be charged more loss because it also failed to label the same docu-
ment with the subclass SOCCER and the sub-subclass CHAMPIONS LEAGUE. A function
implementing this intuition is defined by

`H(ŷ,y) =
∑N

i=1 ci {ŷi 6= yi ∧ ŷj = yj , j ∈ anc(i)},

where c1, . . . , cN > 0 are fixed cost coefficients. This loss, which we call H-loss, can
also be described as follows: all paths in G from a root down to a leaf are examined and,
whenever we encounter a node i such that ŷi 6= yi, we add ci to the loss, whereas all the
loss contributions in the subtree rooted at i are discarded. Note that if c1 = . . . = cN = 1
then `0/1 ≤ `H ≤ `∆. Choices of ci depending on the structure of G are proposed in
Section 4. Given a multilabel ŷ ∈ {0, 1}N define its G-truncation as the multilabel y′ =
(y′

1, ..., y
′
N) ∈ {0, 1}N where, for each i = 1, . . . , N , y′

i = 1 iff ŷi = 1 and ŷj = 1 for all
j ∈ anc(i). Note that the G-truncation of any multilabel always respects G. A graphical

(a) (b) (c) (d)

Figure 1: A one-tree forest (repeated four times). Each node corresponds to a class in the
taxonomy G, hence in this case N = 12. Gray nodes are included in the multilabel under
consideration, white nodes are not. (a) A generic multilabel which does not respect G; (b)
its G-truncation. (c) A second multilabel that respects G. (d) Superposition of multilabel
(b) on multilabel (c): Only the checked nodes contribute to the H-loss between (b) and (c).

representation of the notions introduced so far is given in Figure 1. In the next lemma we
show that whenever y respects G, then `H(ŷ,y) cannot be smaller than `H(y′,y). In other
words, when the multilabel y to be predicted respects a taxonomy G then there is no loss
of generality in restricting to predictions which respect G.

Lemma 1 Let G be a taxonomy, y, ŷ ∈ {0, 1}N be two multilabels such that y respects
G, and y′ be the G-truncation of ŷ. Then `H(y′,y) ≤ `H(ŷ,y) .

Proof. For each i = 1, . . . , N we show that y′
i 6= yi and y′

j = yj for all j ∈ anc(i) implies
ŷi 6= yi and ŷj = yj for all j ∈ anc(i). Pick some i and suppose y′

i 6= yi and y′
j = yj for

all j ∈ anc(i). Now suppose y′
j = 0 (and thus yj = 0) for some j ∈ anc(i). Then yi = 0

since y respects G. But this implies y′
i = 1, contradicting the fact that the G-truncation

y′ respects G. Therefore, it must be the case that y′
j = yj = 1 for all j ∈ anc(i). Hence

the G-truncation of ŷ left each node j ∈ anc(i) unchanged, implying ŷj = yj for all
j ∈ anc(i). But, since the G-truncation of ŷ does not change the value of a node i whose
ancestors j are such that ŷj = 1, this also implies ŷi = y′

i. Therefore ŷi 6= yi and the proof
is concluded. �

3 A probabilistic data model

Our learning algorithms are based on the following statistical model for the data, originally
introduced in [5]. The model defines a probability distribution fG over the set of multilabels
respecting a given taxonomy G by associating with each node i of G a Bernoulli random
variable Yi and defining

fG(y | x) =
∏N

i=1 P
(
Yi = yi | Ypar(i) = ypar(i), X = x

)
.

To guarantee that fG(y | x) = 0 whenever y ∈ {0, 1}N does not respect G, we set
P
(
Yi = 1 | Ypar(i) = 0, X = x

)
= 0. Notice that this definition of fG makes the (rather

simplistic) assumption that all Yk with the same parent node i (i.e., the children of i)
are independent when conditioned on Yi and x. Through fG we specify an i.i.d. process
{(X1,Y 1), (X2,Y 2), . . .}, where, for t = 1, 2, . . ., the multilabel Y t is distributed ac-
cording to fG(· | Xt) and Xt is distributed according to a fixed and unknown distribution
D. Each example (xt,yt) is thus a realization of the corresponding pair (X t,Y t) of ran-
dom variables. Our parametric model for fG is described as follows. First, we assume that
the support of D is the surface of the d-dimensional unit sphere (i.e., instances x ∈ R

d are
such that ||x|| = 1). With each node i in the taxonomy, we associate a unit-norm weight
vector ui ∈ R

d. Then, we define the conditional probabilities for a nonroot node i with
parent j by P (Yi = 1 | Yj = 1, X = x) = (1 + u>

i x)/2. If i is a root node, the previous
equation simplifies to P (Yi = 1 | X = x) = (1 + u>

i x)/2.

3.1 The Bayes-optimal classifier for the H-loss

We now describe a classifier, called H-BAYES, that is the Bayes-optimal classifier for
the H-loss. In other words, H-BAYES classifies any instance x with the multilabel
ŷ = argmin

ȳ∈{0,1} E[`H(ȳ,Y) | x]. Define pi(x) = P
(
Yi = 1 | Ypar(i) = 1, X = x

)
.

When no ambiguity arises, we write pi instead of pi(x). Now, fix any unit-length instance
x and let ŷ be a multilabel that respects G. For each node i in G, recursively define

Hi,x(ŷ) = ci (pi(1 − ŷi) + (1 − pi)ŷi) +
∑

k∈child(i) Hk,x(ŷ) .

The classifier H-BAYES operates as follows. It starts by putting all nodes of G in a set S;
nodes are then removed from S one by one. A node i can be removed only if i is a leaf or
if all nodes j in the subtree rooted at i have been already removed. When i is removed, its
value ŷi is set to 1 if and only if

pi

(
2 −

∑
k∈child(i) Hk,x(ŷ)/ci

)
≥ 1 . (1)

(Note that if i is a leaf then (1) is equivalent to ŷi = {pi ≥ 1/2}.) If ŷi is set to zero, then
all nodes in the subtree rooted at i are set to zero.

Theorem 2 For any taxonomy G and all unit-length x ∈ R
d, the multilabel generated by

H-BAYES is the Bayes-optimal classification of x for the H-loss.

Proof sketch. Let ŷ be the multilabel assigned by H-BAYES and y∗ be any multilabel
minimizing the expected H-loss. Introducing the short-hand Ex[·] = E[· |x], we can write

Ex `H(ŷ,Y) =
∑N

i=1 ci (pi(1 − ŷi) + (1 − pi)ŷi)
∏

j∈anc(i) pj {ŷj = 1} .

Note that we can recursively decompose the expected H-loss as

Ex `H(ŷ,Y) =
∑

i∈root(G) Ex Hi(ŷ,Y),

where
ExHi(ŷ,Y) = ci (pi(1 − ŷi) + (1 − pi)ŷi)

∏

j∈anc(i)

pj {ŷj = 1}+
∑

k∈child(i)

ExHk(ŷ,Y) . (2)

Pick a node i. If i is a leaf, then the sum in the RHS of (2) disappears and y∗
i = {pi ≥ 1/2},

which is also the minimizer of H i,x(ŷ) = ci (pi(1 − ŷi) + (1 − pi)ŷi), implying ŷi = y∗
i .

Now let i be an internal node and inductively assume ŷj = ŷ∗
j for all j ∈ sub(i). Notice

that the factors
∏

j∈anc(i) pj {ŷj = 1} occur in both terms in the RHS of (2). Hence y∗
i does

not depend on these factors and we can equivalently minimize
ci (pi(1 − ŷi) + (1 − pi)ŷi) + pi{ŷi = 1}

∑
k∈child(i) Hk,x(ŷ), (3)

where we noted that, for each k ∈ child(i),

ExHk(ŷ,Y) =
(∏

j∈anc(i) pj {ŷj = 1}
)

pi{ŷi = 1}Hk,x(ŷ) .

Now observe that y∗
i minimizing (3) is equivalent to the assignment produced by H-BAYES.

To conclude the proof, note that whenever y∗
i = 0, Lemma 1 requires that y∗

j = 0 for all
nodes j ∈ sub(i), which is exactly what H-BAYES does. �

4 The algorithms

We consider three incremental algorithms. Each one of these algorithms learns a hierarchi-
cal classifier by training a decision function gi : R

d → {0, 1} at each node i = 1, . . . , N .
For a given set g1, . . . , gN of decision functions, the hierarchical classifier generated by
these algorithms classifies an instance x through a multilabel ŷ = (ŷ1, ..., ŷN) defined as
follows:

ŷi =

{
gi(x) if i ∈ root(G) or ŷj = 1 for all j ∈ anc(i)

0 otherwise. (4)

Note that ŷ computed this way respects G. The classifiers (4) are trained incrementally.
Let gi,t be the decision function at node i after training on the first t − 1 examples. When
the next training example (xt,yt) is available, the algorithms compute the multilabel ŷt
using classifier (4) based on g1,t(xt), . . . , gN,t(xt). Then, the algorithms consider for
an update only those decision functions sitting at nodes i satisfying either i ∈ root(G)
or ypar(i),t = 1. We call such nodes eligible at time t. The decision functions of all
other nodes are left unchanged. The first algorithm we consider is a simple hierarchical
version of the Perceptron algorithm [16], which we call H-PERC. The decision functions at
time t are defined by gi,t(xt) = {w>

i,txt ≥ 0}. In the update phase, the Perceptron rule
wi,t+1 = wi,t +yi,txt is applied to every node i eligible at time t and such that ŷi,t 6= yi,t.
The second algorithm, called APPROX-H-BAYES, approximates the H-BAYES classifier of
Section 3.1 by replacing the unknown quantities pi(xt) with estimates (1+w>

i,txt)/2. The
weights wi,t are regularized least-squares estimates defined by

wi,t = (I + Si,t−1 S>
i,t−1 + xt x>

t)−1Si,t−1y
(i)
t−1 . (5)

The columns of the matrix Si,t−1 are all past instances xs that have been stored at node i;
the s-th component of vector y

(i)
t−1 is the i-th component yi,s of the multilabel ys associated

with instance xs. In the update phase, an instance xt is stored at node i, causing an update
of wi,t, whenever i is eligible at time t and |w>

i,txt| ≤
√

(5 ln t)/Ni,t, where Ni,t is
the number of instances stored at node i up to time t − 1. The corresponding decision
functions gi,t are of the form gi,t(xt) = {w>

i,txt ≥ τi,t}, where the threshold τi,t ≥ 0 at
node i depends on the margin values w>

j,txt achieved by nodes j ∈ sub(i) — recall (1).
Note that gi,t is not a linear-threshold function, as xt appears in the definition of wi,t. The
margin threshold

√
(5 ln t)/Ni,t, controlling the update of node i at time t, reduces the

space requirements of the classifier by keeping matrices Si,t suitably small. This threshold
is motivated by the work [4] on selective sampling.
The third algorithm, which we call H-RLS (Hierarchical Regularized Least Squares), is a
simplified variant of APPROX-H-BAYES in which the thresholds τi,t are set to zero. That
is, we have gi,t(xt) = {w>

i,txt ≥ 0} where the weights wi,t are defined as in (5) and
updated as in the APPROX-H-BAYES algorithm. Details on how to run APPROX-H-BAYES
and H-RLS in dual variables and perform an update at node i in time O(N 2

i,t) are found
in [3] (where a mistake-driven version of H-RLS is analyzed).

5 Experimental results

The empirical evaluation of the algorithms was carried out on two well-known datasets of
free-text documents. The first dataset consists of the first (in chronological order) 100,000
newswire stories from the Reuters Corpus Volume 1, RCV1 [2]. The associated taxonomy
of labels, which are the topics of the documents, has 101 nodes organized in a forest of
4 trees. The forest is shallow: the longest path has length 3 and the the distribution of
nodes, sorted by increasing path length, is {0.04, 0.53, 0.42, 0.01}. For this dataset, we
used the bag-of-words vectorization performed by Xerox Research Center Europe within
the EC project KerMIT (see [4] for details on preprocessing). The 100,000 documents
were divided into 5 equally sized groups of chronologically consecutive documents. We
then used each adjacent pair of groups as training and test set in an experiment (here the
fifth and first group are considered adjacent), and then averaged the test set performance
over the 5 experiments.

The second dataset is a specific subtree of the OHSUMED corpus of medical abstracts [1]:
the subtree rooted in “Quality of Health Care” (MeSH code N05.715). After removing
overlapping classes (OHSUMED is not quite a tree but a DAG), we ended up with 94

Table 1: Experimental results on two hierarchical text classification tasks under various loss
functions. We report average test errors along with standard deviations (in parenthesis). In
bold are the best performance figures among the incremental algorithms.

RCV1 0/1-loss unif. H-loss norm. H-loss ∆-loss
PERC 0.702(±0.045) 1.196(±0.127) 0.100(±0.029) 1.695(±0.182)
H-PERC 0.655(±0.040) 1.224(±0.114) 0.099(±0.028) 1.861(±0.172)
H-RLS 0.456(±0.010) 0.743(±0.026) 0.057(±0.001) 1.086(±0.036)
AH-BAY 0.550(±0.010) 0.815(±0.028) 0.090(±0.001) 1.465(±0.040)
SVM 0.482(±0.009) 0.790(±0.023) 0.057(±0.001) 1.173(±0.051)
H-SVM 0.440(±0.008) 0.712(±0.021) 0.055(±0.001) 1.050(±0.027)

OHSU. 0/1-loss unif. H-loss norm. H-loss ∆-loss
PERC 0.899(±0.024) 1.938(±0.219) 0.058(±0.005) 2.639(±0.226)
H-PERC 0.846(±0.024) 1.560(±0.155) 0.057(±0.005) 2.528(±0.251)
H-RLS 0.769(±0.004) 1.200(±0.007) 0.045(±0.000) 1.957(±0.011)
AH-BAY 0.819(±0.004) 1.197(±0.006) 0.047(±0.000) 2.029(±0.009)
SVM 0.784(±0.003) 1.206(±0.003) 0.044(±0.000) 1.872(±0.005)
H-SVM 0.759(±0.002) 1.170(±0.005) 0.044(±0.000) 1.910(±0.007)

classes and 55,503 documents. We made this choice based only on the structure of the
subtree: the longest path has length 4, the distribution of nodes sorted by increasing path
length is {0.26, 0.37, 0.22, 0.12, 0.03}, and there are a significant number of partial and
multiple path multilabels. The vectorization of the subtree was carried out as follows: after
tokenization, we removed all stopwords and also those words that did not occur at least 3
times in the corpus. Then, we vectorized the documents using the Bow library [13] with a
log(1+ TF) log(IDF) encoding. We ran 5 experiments by randomly splitting the corpus in a
training set of 40,000 documents and a test set of 15,503 documents. Test set performances
are averages over these 5 experiments. In the training set we kept more documents than
in the RCV1 splits since the OHSUMED corpus turned out to be a harder classification
problem than RCV1. In both datasets instances have been normalized to unit length. We
tested the hierarchical Perceptron algorithm (H-PERC), the hierarchical regularized least-
squares algorithm (H-RLS), and the approximated Bayes-optimal algorithm (APPROX-H-
BAYES), all described in Section 4. The results are summarized in Table 1. APPROX-H-
BAYES (AH-BAY in Table 1) was trained using cost coefficients ci chosen as follows: if
i ∈ root(G) then ci = |root(G)|−1. Otherwise, ci = cj/|child(j)|, where j is the parent
of i. Note that this choice of coefficients amounts to splitting a unit cost equally among
the roots and then splitting recursively each node’s cost equally among its children. Since,
in this case, 0 ≤ `H ≤ 1, we call the resulting loss normalized H-loss. We also tested
a hierarchical version of SVM (denoted by H-SVM in Table 1) in which each node is an
SVM classifier trained using a batch version of our hierarchical learning protocol. More
precisely, each node i was trained only on those examples (xt,yt) such that ypar(i),t = 1
(note that, as no conditions are imposed on yi,t, node i is actually trained on both positive
and negative examples). The resulting set of linear-threshold functions was then evaluated
on the test set using the hierachical classification scheme (4). We tried both the C and ν
parametrizations [18] for SVM and found the setting C = 1 to work best for our data.1

We finally tested the “flat” variants of Perceptron and SVM, denoted by PERC and SVM. In
these variants, each node is trained and evaluated independently of the others, disregarding
all taxonomical information. All SVM experiments were carried out using the libSVM
implementation [6]. All the tested algorithms used a linear kernel.

1It should be emphasized that this tuning of C was actually chosen in hindsight, with no cross-
validation.

As far as loss functions are concerned, we considered the 0/1-loss, the H-loss with cost co-
efficients set to 1 (denoted by uniform H-loss), the normalized H-loss, and the symmetric
difference loss (denoted by ∆-loss). Note that H-SVM performs best, but our incremental
algorithms were trained for a single epoch on the training set. The good performance of
SVM (the flat variant of H-SVM) is surprising. However, with a single epoch of training
H-RLS does not perform worse than SVM (except on OHSUMED under the normalized
H-loss) and comes reasonably close to H-SVM. On the other hand, the performance of
APPROX-H-BAYES is disappointing: on OHSUMED it is the best algorithm only for the
uniform H-loss, though it was trained using the normalized H-loss; on RCV1 it never out-
performs H-RLS, though it always does better than PERC and H-PERC. A possible explana-
tion for this behavior is that APPROX-H-BAYES is very sensitive to errors in the estimates
of pi(x) (recall Section 3.1). Indeed, the least-squares estimates (5), which we used to
approximate H-BAYES, seem to work better in practice on simpler (and possibly more ro-
bust) algorithms, such as H-RLS. The lower values of normalized H-loss on OHSUMED
(a harder corpus than RCV1) can be explained because a quarter of the 94 nodes in the
OHSUMED taxonomy are roots, and thus each top-level mistake is only charged about
4/94. As a final remark, we observe that the normalized H-loss gave too small a range of
values to afford fine comparisons among the best performing algorithms.

6 Regret bounds for the H-loss
In this section we prove a theoretical bound on the H-loss of a slight variant of the algorithm
H-RLS tested in Section 5. More precisely, we assume data are generated according to
the probabilistic model introduced in Section 3 with unknown instance distribution D and
unknown coefficients u1, . . . , uN . We define the regret of a classifier assigning label ŷ
to instance X as E `H(ŷ,Y t) − E `H(y,Y), where the expected value is with respect the
random draw of (X,Y) and y is the multilabel assigned by classifier (4) when the decision
functions gi are zero-threshold functions of the form gi(x) = {u>

i x ≥ 0}. The theorem
below shows that the regret of the classifier learned by a variant of H-RLS after t training
examples, with t large enough, is exponentially small in t. In other words, H-RLS learns
to classify as well as the algorithm that is given the true parameters u1, . . . , uN of the
underlying data-generating process. We have been able to prove the theorem only for the
variant of H-RLS storing all instances at each node. That is, every eligible node at time t is
updated, irrespective of whether |w>

i,txt| ≤
√

(5 ln t)/Ni,t.

Given the i.i.d. data-generating process (X1,Y 1), (X2,Y 2), . . ., for each node k we de-
fine the derived process Xk1

,Xk2
, . . . including all and only the instances Xs of the orig-

inal process that satisfy Ypar(k),s = 1. We call this derived process the process at node k.
Note that, for each k, the process at node k is an i.i.d. process. However, its distribution
might depend on k. The spectrum of the process at node k is the set of eigenvalues of the
correlation matrix with entries E[Xk1,i Xk1,j] for i, j = 1, . . . , d. We have the following
theorem, whose proof is omitted due to space limitations.

Theorem 3 Let G be a taxonomy with N nodes and let fG be a joint density for G
parametrized by N unit-norm vectors u1, . . . , uN ∈ R

d. Assume the instance distri-
bution is such that there exist γ1, . . . , γN > 0 satisfying P

(
|u>

i Xt| ≥ γi

)
= 1 for

i = 1, . . . , N . Then, for all t > max
{

maxi=1,...,N
16

µi λi γi

, maxi=1,...,N
192d
µi λ2

i

}
the regret

E `H(ŷt,Y t) − E `H(yt,Y t) of the modified H-RLS algorithm is at most
N∑

i=1

µi

[
t e−κ1 γ2

i
λi t µi + t2 e−κ2λ2

i
t µi

](∑

j∈sub(i)

cj

)
,

where κ1, κ2 are constants, µi = E

[∏
j∈anc(i)

(
(1 + u>

j X)/2
)]

and λi is the smallest

eigenvalue in the spectrum of the process at node i.

7 Conclusions and open problems
In this work we have studied the problem of hierarchical classification of data instances
in the presence of partial and multiple path labellings. We have introduced a new hierar-
chical loss function, the H-loss, derived the corresponding Bayes-optimal classifier, and
empirically compared an incremental approximation to this classifier with some other in-
cremental and nonincremental algorithms. Finally, we have derived a theoretical guarantee
on the H-loss of a simplified variant of the approximated Bayes-optimal algorithm.

Our investigation leaves several open issues. The current approximation to the Bayes-
optimal classifier is not satisfying, and this could be due to a bad choice of the model, of
the estimators, of the datasets, or of a combination of them. Also, the normalized H-loss
is not fully satisfying, since the resulting values are often too small. From the theoretical
viewpoint, we would like to analyze the regret of our algorithms with respect to the Bayes-
optimal classifier, rather than with respect to a classifier that makes a suboptimal use of the
true model parameters.

References
[1] The OHSUMED test collection. URL: medir.ohsu.edu/pub/ohsumed/.
[2] Reuters corpus volume 1. URL: about.reuters.com/researchandstandards/corpus/.
[3] N. Cesa-Bianchi, A. Conconi, and C. Gentile. A second-order Perceptron algorithm. In Proc.

15th COLT, pages 121–137. Springer, 2002.
[4] N. Cesa-Bianchi, A. Conconi, and C. Gentile. Learning probabilistic linear-threshold classifiers

via selective sampling. In Proc. 16th COLT, pages 373–386. Springer, 2003.
[5] N. Cesa-Bianchi, A. Conconi, and C. Gentile. Regret bounds for hierarchical classification with

linear-threshold functions. In Proc. 17th COLT. Springer, 2004. To appear.
[6] C.-C. Chang and C.-J. Lin. Libsvm — a library for support vector machines. URL:

www.csie.ntu.edu.tw/∼cjlin/libsvm/.
[7] N. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines. Cambridge

University Press, 2001.
[8] O. Dekel, J. Keshet, and Y. Singer. Large margin hierarchical classification. In Proc. 21st ICML.

Omnipress, 2004.
[9] S.T. Dumais and H. Chen. Hierarchical classification of web content. In Proc. 23rd ACM Int.

Conf. RDIR, pages 256–263. ACM Press, 2000.
[10] M. Granitzer. Hierarchical Text Classification using Methods from Machine Learning. PhD

thesis, Graz University of Technology, 2003.
[11] T. Hofmann, L. Cai, and M. Ciaramita. Learning with taxonomies: Classifying documents and

words. In NIPS Workshop on Syntax, Semantics, and Statistics, 2003.
[12] D. Koller and M. Sahami. Hierarchically classifying documents using very few words. In Proc.

14th ICML, Morgan Kaufmann, 1997.
[13] A. McCallum. Bow: A toolkit for statistical language modeling, text retrieval, classification

and clustering. URL: www-2.cs.cmu.edu/∼mccallum/bow/.
[14] A.K. McCallum, R. Rosenfeld, T.M. Mitchell, and A.Y. Ng. Improving text classification by

shrinkage in a hierarchy of classes. In Proc. 15th ICML. Morgan Kaufmann, 1998.
[15] D. Mladenic. Turning yahoo into an automatic web-page classifier. In Proceedings of the 13th

European Conference on Artificial Intelligence, pages 473–474, 1998.
[16] F. Rosenblatt. The Perceptron: A probabilistic model for information storage and organization

in the brain. Psychol. Review, 65:386–408, 1958.
[17] M.E. Ruiz and P. Srinivasan. Hierarchical text categorization using neural networks. Informa-

tion Retrieval, 5(1):87–118, 2002.
[18] B. Schölkopf, A. J. Smola, R. C. Williamson, and P. L. Bartlett. New support vector algorithms.

Neural Computation, 12:1207–1245, 2000.
[19] B. Schölkopf and A. Smola. Learning with kernels. MIT Press, 2002.
[20] A. Sun and E.-P. Lim. Hierarchical text classification and evaluation. In Proc. 2001 Int. Conf.

Data Mining, pages 521–528. IEEE Press, 2001.
[21] V.N. Vapnik. Statistical Learning Theory. Wiley, 1998.

