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Abstract

Experimental studies have observed synaptic potentiation when a
presynaptic neuron fires shortly before a postsynaptic neuron, and
synaptic depression when the presynaptic neuron fires shortly af-
ter. The dependence of synaptic modulation on the precise tim-
ing of the two action potentials is known as spike-timing depen-
dent plasticity or STDP. We derive STDP from a simple compu-
tational principle: synapses adapt so as to minimize the postsy-
naptic neuron’s variability to a given presynaptic input, causing
the neuron’s output to become more reliable in the face of noise.
Using an entropy-minimization objective function and the biophys-
ically realistic spike-response model of Gerstner (2001), we simu-
late neurophysiological experiments and obtain the characteristic
STDP curve along with other phenomena including the reduction in
synaptic plasticity as synaptic efficacy increases. We compare our
account to other efforts to derive STDP from computational princi-
ples, and argue that our account provides the most comprehensive
coverage of the phenomena. Thus, reliability of neural response in
the face of noise may be a key goal of cortical adaptation.

1 Introduction

Experimental studies have observed synaptic potentiation when a presynaptic neu-
ron fires shortly before a postsynaptic neuron, and synaptic depression when the
presynaptic neuron fires shortly after. The dependence of synaptic modulation on
the precise timing of the two action potentials, known as spike-timing dependent
plasticity or STDP, is depicted in Figure 1. Typically, plasticity is observed only
when the presynaptic and postsynaptic spikes (hereafter, pre and post) occur within
a 20–30 ms time window, and the transition from potentiation to depression is very
rapid. Another important observation is that synaptic plasticity decreases with in-
creased synaptic efficacy. The effects are long lasting, and are therefore referred to
as long-term potentiation (LTP) and depression (LTD). For detailed reviews of the
evidence for STDP, see [1, 2].

Because these intriguing findings appear to describe a fundamental learning mech-
anism in the brain, a flurry of models have been developed that focus on different
aspects of STDP, from biochemical models that explain the underlying mechanisms
giving rise to STDP [3], to models that explore the consequences of a STDP-like
learning rules in an ensemble of spiking neurons [4, 5, 6, 7], to models that pro-
pose fundamental computational justifications for STDP. Most commonly, STDP



Figure 1: (a) Measuring STDP experimentally: pre-post spike pairs are repeatedly in-
duced at a fixed interval ∆tpre−post, and the resulting change to the strength of the synapse
is assessed; (b) change in synaptic strength after repeated spike pairing as a function of
the difference in time between the pre and post spikes (data from Zhang et al., 1998). We
have superimposed an exponential fit of LTP and LTD.

is viewed as a type of asymmetric Hebbian learning with a temporal dimension.
However, this perspective is hardly a fundamental computational rationale, and
one would hope that such an intuitively sensible learning rule would emerge from a
first-principle computational justification.

Several researchers have tried to derive a learning rule yielding STDP from first
principles. Rao and Sejnowski [8] show that STDP emerges when a neuron attempts
to predict its membrane potential at some time t from the potential at time t−∆t.
However, STDP emerges only for a narrow range of ∆t values, and the qualitative
nature of the modeling makes it unclear whether a quantitative fit can be obtained.
Dayan and Häusser [9] show that STDP can be viewed as an optimal noise-removal
filter for certain noise distributions. However, even small variation from these noise
distributions yield quite different learning rules, and the noise statistics of biological
neurons are unknown. Eisele (private communication) has shown that an STDP-like
learning rule can be derived from the goal of maintaining the relevant connections
in a network. Chechik [10] is most closely related to the present work. He relates
STDP to information theory via maximization of mutual information between input
and output spike trains. This approach derives the LTP portion of STDP, but fails
to yield the LTD portion.

The computational approach of Chechik (as well as Dayan and Häusser) is premised
on a rate-coding neuron model that disregards the relative timing of spikes. It
seems quite odd to argue for STDP using rate codes: if spike timing is irrelevant
to information transmission, then STDP is likely an artifact and is not central to
understanding mechanisms of neural computation. Further, as noted in [9], because
STDP is not quite additive in the case of multiple input or output spikes that are
near in time [11], one should consider interpretations that are based on individual
spikes, not aggregates over spike trains.

Here, we present an alternative computational motivation for STDP. We conjecture
that a fundamental objective of cortical computation is to achieve reliable neural re-
sponses, that is, neurons should produce the identical response—both in the number
and timing of spikes—given a fixed input spike train. Reliability is an issue if neu-
rons are affected by noise influences, because noise leads to variability in a neuron’s
dynamics and therefore in its response. Minimizing this variability will reduce the
effect of noise and will therefore increase the informativeness of the neuron’s output
signal. The source of the noise is not important; it could be intrinsic to a neuron
(e.g., a noisy threshold) or it could originate in unmodeled external sources causing
fluctuations in the membrane potential uncorrelated with a particular input.

We are not suggesting that increasing neural reliability is the only learning objective.



If it were, a neuron would do well to give no response regardless of the input.
Rather, reliability is but one of many objectives that learning tries to achieve. This
form of unsupervised learning must, of course, be complemented by supervised and
reinforcement learning that allow an organism to achieve its goals and satisfy drives.

We derive STDP from the following computational principle: synapses adapt so as
to minimize the entropy of the postsynaptic neuron’s output in response to a given
presynaptic input. In our simulations, we follow the methodology of neurophysiolog-
ical experiments. This approach leads to a detailed fit to key experimental results.
We model not only the shape (sign and time course) of the STDP curve, but also
the fact that potentiation of a synapse depends on the efficacy of the synapse—it
decreases with increased efficacy. In addition to fitting these key STDP phenom-
ena, the model allows us to make predictions regarding the relationship between
properties of the neuron and the shape of the STDP curve.

Before delving into the details of our approach, we attempt to give a basic intu-
ition about the approach. Noise in spiking neuron dynamics leads to variability in
the number and timing of spikes. Given a particular input, one spike train might
be more likely than others, but the output is nondeterministic. By the entropy-
minimization principle, adaptation should reduce the likelihood of these other pos-
sibilities. To be concrete, consider a particular experimental paradigm. In [12], a
pre neuron is identified with a weak synapse to a post neuron, such that the pre is
unlikely to cause the post to fire. However, the post can be induced to fire via a
second presynaptic connection. In a typical trial, the pre is induced to fire a single
spike, and with a variable delay, the post is also induced to fire (typically) a single
spike. To increase the likelihood of the observed post response, other response pos-
sibilities must be suppressed. With presynaptic input preceding the postsynaptic
spike, the most likely alternative response is no output spikes at all. Increasing
the synaptic connection weight should then reduce the possibility of this alternative
response. With presynaptic input following the postsynaptic spike, the most likely
alternative response is a second output spike. Decreasing the synaptic connection
weight should reduce the possibility of this alternative response. Because both of
these alternatives become less likely as the lag between pre and post spikes is in-
creased, one would expect that the magnitude of synaptic plasticity diminishes with
the lag, as is observed in the STDP curve.

Our approach to reducing response variability given a particular input pattern in-
volves computing the gradient of synaptic weights with respect to a differentiable
model of spiking neuron behavior. We use the Spike Response Model (SRM) of [13]
with a stochastic threshold, where the stochastic threshold models fluctuations of
the membrane potential or the threshold outside of experimental control. For the
stochastic SRM, the response probability is differentiable with respect to the synap-
tic weights, allowing us to calculate the entropy gradient with respect to the weights
conditional on the presented input. Learning is presumed to take a gradient step
to reduce this conditional entropy. In modeling neurophysiological experiments, we
demonstrate that this learning rule yields the typical STDP curve. We can predict
the relationship between the exact shape of the STDP curve and physiologically
measurable parameters, and we show that our results are robust to the choice of
the few free parameters of the model.

Two papers in these proceedings are closely related to our work. They also find
STDP-like curves when attempting to maximize an information-theoretic measure—
the mutual information between input and output—for a Spike Response Model
[14, 15]. Bell & Parra [14] use a deterministic SRM model which does not model the
LTD component of STDP properly. The derivation by Toyoizumi et al. [15] is valid
only for an essentially constant membrane potential with small fluctuations. Neither
of these approaches has succeeded in quantitatively modeling specific experimental



data with neurobiologically-realistic timing parameters, and neither explains the
saturation of LTD/LTP with increasing weights as we do. Nonetheless, these models
make an interesting contrast to ours by suggesting a computational principle of
optimization of information transmission, as contrasted with our principle of neural
noise reduction. Perhaps experimental tests can be devised to distinguish between
these competing theories.

2 The Stochastic Spike Response Model

The Spike Response Model (SRM), defined by Gerstner [13], is a generic integrate-
and-fire model of a spiking neuron that closely corresponds to the behavior of a
biological spiking neuron and is characterized in terms of a small set of easily inter-
pretable parameters [16]. The standard SRM formulation describes the temporal
evolution of the membrane potential based on past neuronal events, specifically as
a weighted sum of postsynaptic potentials (PSPs) modulated by reset and thresh-
old effects of previous postsynaptic spiking events. Following [13], the membrane
potential of cell i at time t, ui(t), is defined as:

ui(t) = η(t − f̂i) +
∑

j∈Γi

wij

∑

fj∈Ft
j

ε(t − f̂i, t − fj), (1)

where Γi is the set of inputs connected to neuron i, F t
j is the set of times prior to

t that neuron j has spiked, f̂i is the time of the last spike of neuron i, wij is the

synaptic weight from neuron j to neuron i, ε(t − f̂i, t − fj) is the PSP in neuron

i due to an input spike from neuron j at time fj , and η(t − f̂i) is the refractory

response due to the postsynaptic spike at time f̂i. Neuron i fires when the potential
ui(t) exceeds a threshold (ϑ) from below.

The postsynaptic potential ε is modeled as the differential alpha function in [13],
defined with respect to two variables: the time since the most recent postsynaptic
spike, x, and the time since the presynaptic spike, s:
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where τs and τm are the rise and decay time-constants of the PSP, and H is the
Heaviside function. The refractory reset function is defined to be [13]:

η(x) = uabsH(∆abs − x)H(−x) + uabsexp
(

−
x + ∆abs

τf
r

)

+ us
rexp

(

−
x

τs
r

)

, (3)

where uabs is a large negative contribution to the potential to model the absolute
refractory period, with duration ∆abs. We smooth this refractory response by a fast
decaying exponential with time constant τf

r . The third term in the sum represents
the slow decaying exponential recovery of an elevated threshold, us

r, with time
constant τ s

r . (Graphs of these ε and η functions can be found in [13].) We made
a minor modification to the SRM described in [13] by relaxing the constraint that
τs
r = τm; smoothing the absolute refractory function is mentioned in [13] but not

explicitly defined as we do here. In all simulations presented, ∆abs = 2ms, τ s
r = 4τm,

and τf
r = 0.1τm.

The SRM we just described is deterministic. Gerstner [13] introduces a stochas-
tic variant of the SRM (sSRM) by incorporating the notion of a stochastic firing
threshold: given membrane potential ui(t), the probability density of the neuron
firing at time t is specified by ρ(ui(t)). Herrmann & Gerstner [17] find that then
for a realistic escape-rate noise model the firing probability density as a function of
the potential is initially small and constant, transitioning to asymptotically linear



increasing around threshold ϑ. In our simulations, we use such a function:

ρ(v) =
β

α
(ln[1 + exp(α(ϑ − v))] − α(ϑ − v)), (4)

where ϑ is the firing threshold in the absence of noise, α determines the abruptness of
the constant-to-linear probability density transition around ϑ, and β determines the
slope of the increasing part. Experiments with sigmoidal and exponential density
functions were found to not qualitatively affect the results.

3 Minimizing Conditional Entropy

We now derive the rule for adjusting the weight from a presynaptic neuron j to a
postsynaptic sSRM neuron i, so as to minimize the entropy of i’s response given
a particular spike sequence from j. A spike sequence is described by the set of all
times at which spikes have occurred within some interval between 0 and T , denoted
FT

j for neuron j. We assume the interval is wide enough that spikes outside the
interval do not influence the state of the neuron within the interval (e.g., through
threshold reset effects). We can then treat intervals as independent of each other.

Let the postsynaptic neuron i produce a response ξ ∈ Ωi, where Ωi is the set of all
possible responses given the input, ξ ≡ FT

i , and g(ξ) is the probability density over
responses. The differential conditional entropy h(Ωi) of neuron i’s response is then
defined as:

h(Ωi) = −

∫

Ωi

g(ξ)log
(

g(ξ)
)

dξ. (5)

To minimize the differential conditional entropy by adjusting the neuron’s weights,
we compute the gradient of the conditional entropy with respect to the weights:

∂h(Ωi)

∂wij

= −

∫

Ωi

g(ξ)
∂log(g(ξ))

∂wij

(

log(g(ξ)) + 1
)

dξ. (6)

For a differentiable neuron model, ∂log(g(ξ))/∂wij can be expressed as follows when

neuron i fires once at time f̂i [18]:

∂log(g(ξ))

∂wij

=

∫ T

t=0

∂ρ(ui(t))

∂ui(t)

∂ui(t)

∂wij

(

δ(t − f̂i) − ρ(ui(t))
)

ρ(ui(t))
dt, (7)

where δ(.) is the Dirac delta, and ρ(ui(t)) is the firing probability-density of neuron
i at time t. (See [18] for the generalization to multiple postsynaptic spikes.) With
the sSRM we can compute the partial derivatives ∂ρ(ui(t))/∂ui(t) and ∂ui(t)/∂wij .
Given the density function (4),

∂ρ(ui(t))

∂ui(t)
=

β

1 + exp(α(ϑ − ui(t))
,

∂ui(t)

∂wij

= ε(t − f̂i, t − fj).

To perform gradient descent in the conditional entropy, we use the weight update

∆wij ∝ −
∂h(Ωi)

∂wij

(8)

∝

∫

Ωi

g(ξ)
(

log(g(ξ)) + 1
)

(

∫ T

t=0

βε(t − f̂i, t − fj)
(

δ(t − f̂i) − ρ(ui(t))
)

(1 + exp(α(ϑ − ui(t)))ρ(ui(t))
dt

)

dξ.

We can use numerical methods to evaluate Equation (8). However, it seems bio-
logically unrealistic to suppose a neuron can integrate over all possible responses ξ.
This dilemma can be circumvented in two ways. First, the resulting learning rule
might be cached in some form through evolution so that the full computation is not
necessary (e.g., in an STDP curve). Second, the specific response produced by a
neuron on a single trial might be considered to be a sample from the distribution
g(ξ), and the integration is performed by a sampling process over repeated trials;



Figure 2: (a) Experimental setup of Zhang et al. and (b) their experimental STDP curve
(small squares) vs. our model (solid line). Model parameters: τs = 1.5ms, τm = 12.25ms.

each trial would produce a stochastic gradient step.

4 Simulation Methodology

We model in detail the experiment of Zhang et al. [12] (Figure 2a). In this exper-
iment, a post neuron is identified that has two neurons projecting to it, call them
the pre and the driver. The pre is subthreshold: it produces depolarization but no
spike. The driver is suprathreshold: it induces a spike in the post. Plasticity of
the pre-post synapse is measured as a function of the timing between pre and post
spikes (∆tpre−post) by varying the timing between induced spikes in the pre and the
driver (∆tpre−driver). This measurement yields the well-known STDP curve (Figure
1b).1 The experiment imposes several constraints on a simulation: The driver alone
causes spiking > 70% of the time, the pre alone causes spiking < 10% of the time,
synchronous firing of driver and pre cause LTP if and only if the post fires, and the
time constants of the EPSPs—τs and τm in the sSRM—are in the range of 1–3ms
and 10–15ms respectively. These constraints remove many free parameters from
our simulation. We do not explicitly model the two input cells; instead, we model
the EPSPs they produce. The magnitude of these EPSPs are picked to satisfy the
experimental constraints: the driver EPSP alone causes a spike in the post on 77.4%
of trials, and the pre EPSP alone causes a spike on fewer than 0.1% of trials. Free
parameters of the simulation are ϑ and β in the spike-probability function (α can be
folded into ϑ), and the magnitude (us

r, uabs) and reset time constants (τs
r , τf

r ,∆abs).

The dependent variable of the simulation is ∆tpre−driver, and we measure the time
of the post spike to determine ∆tpre−post. We estimate the weight update for a
given ∆tpre−driver using Equation 8, approximating the integral by a summation
over all time-discretized output responses consisting of 0, 1, or 2 spikes. Three or
more spikes have a probability that is vanishingly small.

5 Results

Figure 2b shows a typical STDP curve obtained from the model by plotting the
estimated weight update of Equation 8 against ∆tpre−post. The model also explains
a key finding that has not been explained by any other account, namely, that the
magnitude of LTP or LTD decreases as the efficacy of the synapse between the pre
and the post increases [2]. Further, the dependence is stronger for LTP than LTD.
Figure 3a plots the magnitude of LTP for ∆tpre−post = −5 ms and the magnitude
of LTD for ∆tpre−post = 7 ms as the amplitude of the pre’s EPSP is increased.
The magnitude of the weight change decreases as the weight increases, and this

1In most experimental studies of STDP, the driver neuron is not used: the post is
induced to spike by a direct depolarizing current injection. Modeling current injections
requires additional assumptions. Consequently, we focus on the Zhang et al. experiment.



Figure 3: (a) LTP and LTD plasticity as a function of synaptic efficacy of the subthreshold
input. (b)-(d) STDP curves predicted by model as τm, u

s
r, and ϑ are manipulated.

effect is stronger for LTP than LTD. The model’s explanation for this phenomenon
is simple: As the weight increases, its effect saturates, and a small change to the
weight does little to alter its influence. Consequently, the gradient of the entropy
with respect to the weight goes toward zero.

The qualitative shape of the STDP curve is robust to settings of the model’s pa-
rameters, e.g., the EPSP decay time constant τm (Figure 3b), the strength of the
threshold reset us

r (Figure 3c), and the spiking threshold ϑ (Figure 3d). Addition-
ally, the spike-probability function (exponential, sigmoidal, or linear) is not critical.
The model makes two predictions relating the shape of the STDP curve to proper-
ties of a neuron. These predictions are empirically testable if a diverse population
of cells can be studied: (1) the width of the LTD and LTP windows should depend
on the EPSP decay time constant (Figure 3b), (2) the strength of LTP to LTD
should depend on the strength of the threshold reset (Figure 3c), because stronger
resets lead to reduced LTD by reducing the probability of a second spike.

6 Discussion

In this paper, we explored a fundamental computational principle, that synapses
adapt so as to minimize the variability of a neuron’s response in the face of
noisy inputs, yielding more reliable neural representations. From this principle—
instantiated as conditional entropy minimization—we derived the STDP learning
curve. Importantly, the simulation methodology we used to derive the curve closely
follows the procedure used in neurophysiological experiments [12]. Our simulations
obtain an STDP curve that is robust to model parameters and details of the noise
distribution.

Our results are critically dependent on the use of Gerstner’s stochastic Spike Re-
sponse Model, whose dynamics are a good approximation to those of a biological
spiking neuron. The sSRM has the virtue of being characterized by parameters that
are readily related to neural dynamics, and its dynamics are differentiable, allowing
us to derive a gradient-descent learning rule.



Our simulations are based on the classical STDP experiment in which a single
presynaptic spike is paired with a single postsynaptic spike. The same methodology
can be applied to the situation in which there are multiple presynaptic and/or
postsynaptic spikes, although the computation involved becomes nontrivial. We
are currently modeling the data from multi-spike experiments.

We modeled the Zhang et al. experiment in which a driver neuron is used to induce
the post to fire. To induce the post to fire, most other studies use a depolarizing
current injection. We are not aware of any established model for current injection
within the SRM framework, and we are currently elaborating such a model. We
expect to then be able to simulate experiments in which current injections are used,
allowing us to investigate the interesting issue of whether the two experimental
techniques produce different forms of STDP.
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