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Abstract

Various problems in machine learning, databases, and statistics involve
pairwise distances among a set of objects. It is often desirable for these
distances to satisfy the properties of a metric, especially the triangle in-
equality. Applications where metric data is useful include clustering,
classification, metric-based indexing, and approximation algorithms for
various graph problems. This paper presents the Metric Nearness Prob-
lem: Given a dissimilarity matrix, find the “nearest” matrix of distances
that satisfy the triangle inequalities. For `p nearness measures, this pa-
per develops efficient triangle fixing algorithms that compute globally
optimal solutions by exploiting the inherent structure of the problem.
Empirically, the algorithms have time and storage costs that are linear
in the number of triangle constraints. The methods can also be easily
parallelized for additional speed.

1 Introduction

Imagine that a lazy graduate student has been asked to measure the pairwise distances
among a group of objects in a metric space. He does not complete the experiment, and
he must figure out the remaining numbers before his adviser returns from her conference.
Obviously, all the distances need to be consistent, but the student does not know very much
about the space in which the objects are embedded. One way to solve his problem is to find
the “nearest” complete set of distances that satisfy the triangle inequalities. This procedure
respects the measurements that have already been taken while forcing the missing numbers
to behave like distances.

More charitably, suppose that the student has finished the experiment, but—measurements
being what they are—the numbers do not satisfy the triangle inequality. The student knows
that they must represent distances, so he would like to massage the data so that it corre-
sponds with his a priori knowledge. Once again, the solution seems to require the “nearest”
set of distances that satisfy the triangle inequalities.

Matrix nearness problems [6] offer a natural framework for developing this idea. If there
are n points, we may collect the measurements into an n × n symmetric matrix whose
(j, k) entry represents the dissimilarity between the j-th and k-th points. Then, we seek to
approximate this matrix by another whose entries satisfy the triangle inequalities. That is,



mik ≤ mij + mjk for every triple (i, j, k). Any such matrix will represent the distances
among n points in some metric space. We calculate approximation error with a distortion
measure that depends on how the corrected matrix should relate to the input matrix. For
example, one might prefer to change a few entries significantly or to change all the entries
a little.

We call the problem of approximating general dissimilarity data by metric data the Metric
Nearness (MN) Problem. This simply stated problem has not previously been studied, al-
though the literature does contain some related topics (see Section 1.1). This paper presents
a formulation of the Metric Nearness Problem (Section 2), and it shows that every locally
optimal solution is globally optimal. To solve the problem we present triangle-fixing al-
gorithms that take advantage of its structure to produce globally optimal solutions. It can
be computationally prohibitive, both in time and storage, to solve the MN problem without
these efficiencies.

1.1 Related Work

The Metric Nearness (MN) problem is novel, but the literature contains some related work.

The most relevant research appears in a recent paper of Roth et al. [11]. They observe
that machine learning applications often require metric data, and they propose a technique
for metrizing dissimilarity data. Their method, constant-shift embedding, increases all the
dissimilarities by an equal amount to produce a set of Euclidean distances (i.e., a set of
numbers that can be realized as the pairwise distances among an ensemble of points in a
Euclidean space). The size of the translation depends on the data, so the relative and ab-
solute changes to the dissimilarity values can be large. Our approach to metrizing data is
completely different. We seek a consistent set of distances that deviates as little as pos-
sible from the original measurements. In our approach, the resulting set of distances can
arise from an arbitrary metric space; we do not restrict our attention to obtaining Euclidean
distances. In consequence, we expect metric nearness to provide superior denoising. More-
over, our techniques can also learn distances that are missing entirely.

There is at least one other method for inferring a metric. An article of Xing et al. [12]
proposes a technique for learning a Mahalanobis distance for data in R

s. That is, a metric
dist(x,y) =

√

(x − y)T G(x − y), where G is an s × s positive semi-definite matrix.
The user specifies that various pairs of points are similar or dissimilar. Then the matrix
G is computed by minimizing the total squared distances between similar points while
forcing the total distances between dissimilar points to exceed one. The article provides
explicit algorithms for the cases where G is diagonal and where G is an arbitrary positive
semi-definite matrix. In comparison, the metric nearness problem is not restricted to Ma-
halanobis distances; it can learn a general discrete metric. It also allows us to use specific
distance measurements and to indicate our confidence in those measurements (by means of
a weight matrix), rather than forcing a binary choice of “similar” or “dissimilar.”

The Metric Nearness Problem may appear similar to metric Multi-Dimensional Scaling
(MDS) [8], but we emphasize that the two problems are distinct. The MDS problem en-
deavors to find an ensemble of points in a prescribed metric space (usually a Euclidean
space) such that the distances between these points are close to the set of input distances.
In contrast, the MN problem does not seek to find an embedding. In fact MN does not
impose any hypotheses on the underlying space other than requiring it to be a metric space.

The outline of rest of the paper is as follows. Section 2 formally describes the MN problem.
In Section 3, we present algorithms that allow us to solve MN problems with `p nearness
measures. Some applications and experimental results follow in Section 4. Section 5 dis-
cusses our results, some interesting connections, and possibilities for future research.



2 The Metric Nearness Problem

We begin with some basic definitions. We define a dissimilarity matrix to be a nonnegative,
symmetric matrix with zero diagonal. Meanwhile, a distance matrix is defined to be a
dissimilarity matrix whose entries satisfy the triangle inequalities. That is, M is a distance
matrix if and only if it is a dissimilarity matrix and mik ≤ mij + mjk for every triple of
distinct indices (i, j, k). Distance matrices arise from measuring the distances among n
points in a pseudo-metric space (i.e., two distinct points can lie at zero distance from each
other). A distance matrix contains N = n (n − 1)/2 free parameters, so we denote the
collection of all distance matrices by MN . The set MN is a closed, convex cone.

The metric nearness problem requests a distance matrix M that is closest to a given dis-
similarity matrix D with respect to some measure of “closeness.” In this work, we restrict
our attention to closeness measures that arise from norms. Specifically, we seek a distance
matrix M so that,

M ∈

{

argmin
X∈MN

∥

∥W �
(

X −D
)∥

∥

}

, (2.1)

where ‖ · ‖ is a norm, W is a symmetric non-negative weight matrix, and ‘�’ denotes the
elementwise (Hadamard) product of two matrices. The weight matrix reflects our confi-
dence in the entries of D. When each dij represents a measurement with variance σ2

ij , we
might set wij = 1/σ2

ij . If an entry of D is missing, one can set the corresponding weight
to zero.

Theorem 2.1. The function X 7→
∥

∥W �
(

X −D
)∥

∥ always attains its minimum on MN .
Moreover, every local minimum is a global minimum. If, in addition, the norm is strictly
convex and the weight matrix has no zeros or infinities off its diagonal, then there is a
unique global minimum.
Proof. The main task is to show that the objective function has no directions of recession,
so it must attain a finite minimum on MN . Details appear in [4].

It is possible to use any norm in the metric nearness problem. We further restrict our
attention to the `p norms. The associated Metric Nearness Problems are

min
X∈MN

[

∑

j 6=k

∣

∣wjk (xjk − djk)
∣

∣

p
]1/p

for 1 ≤ p <∞, and (2.2)

min
X∈MN

max
j 6=k

∣

∣wjk (xjk − djk)
∣

∣ for p =∞. (2.3)

Note that the `p norms are strictly convex for 1 < p <∞, and therefore the solution to (2.2)
is unique. There is a basic intuition for choosing p. The `1 norm gives the absolute sum
of the (weighted) changes to the input matrix, while the `∞ only reflects the maximum
absolute change. The other `p norms interpolate between these extremes. Therefore, a
small value of p typically results in a solution that makes a few large changes to the original
data, while a large value of p typically yields a solution with many small changes.

3 Algorithms

This section describes efficient algorithms for solving the Metric Nearness Problems (2.2)
and (2.3). For ease of exposition, we assume all weights to equal one. At first, it may
appear that one should use quadratic programming (QP) software when p = 2, linear pro-
gramming (LP) software when p = 1 or p = ∞, and convex programming software for
the remaining p. It turns out that the time and storage requirements of this approach can
be prohibitive. An efficient algorithm must exploit the structure of the triangle inequalities.
In this paper, we develop one such approach, which may be viewed as a triangle-fixing



algorithm. This method examines each triple of points in turn and optimally enforces any
triangle inequality that fails. (The definition of “optimal” depends on the `p nearness mea-
sure.) By introducing appropriate corrections, we can ensure that this iterative algorithm
converges to a globally optimal solution of MN.

Notation. We must introduce some additional notation before proceeding. To each matrix
X of dissimilarities or distances, we associate the vector x formed by stacking the columns
of the lower triangle, left to right. We use xij to refer to the (i, j) entry of the matrix as
well as the corresponding component of the vector. Define a constraint matrix A so that
M is a distance matrix if and only if Am ≤ 0. Note that each row of A contains three
nonzero entries, +1, −1, and −1.

3.1 MN for the `2 norm

We first develop a triangle-fixing algorithm for solving (2.2) with respect to the `2 norm.
This case turns out to be the simplest and most illuminating case. It also plays a pivotal
role in the algorithms for the `1 and `∞ MN problems.

Given a dissimilarity vector d, we wish to find its orthogonal projection m onto the cone
MN . Let us introduce an auxiliary variable e = m− d that represents the changes to the
original distances. We also define b = −Ad. The negative entries of b indicate how much
each triangle inequality is violated. The problem becomes

mine ‖e‖2,

subject to Ae ≤ b.
(3.1)

After finding the minimizer e?, we can use the relation m? = d+e? to recover the optimal
distance vector.

Here is our approach. We initialize the vector of changes to zero (e = 0), and then we
begin to cycle through the triangles. Suppose that the (i, j, k) triangle inequality is violated,
i.e., eij − ejk − eki > bijk. We wish to remedy this violation by making an `2-minimal
adjustment of eij , ejk, and eki. In other words, the vector e is projected orthogonally onto
the constraint set {e′ : e′ij − e′jk − e′ki ≤ bijk}. This is tantamount to solving

mine′
1

2

[

(e′ij − eij)
2 + (e′jk − ejk)2 + (e′ki − eki)

2)
]

,

subject to e′ij − e′jk − e′ki = bijk.
(3.2)

It is easy to check that the solution is given by

e′ij ← eij − µijk, e′jk ← ejk + µijk, and e′ki ← eki + µijk, (3.3)

where µijk = 1

3
(eij − ejk − eki − bijk) > 0. Only three components of the vector e

need to be updated. The updates in (3.3) show that the largest edge weight in the triangle
is decreased, while the other two edge weights are increased.

In turn, we fix each violated triangle inequality using (3.3). We must also introduce a
correction term to guide the algorithm to the global minimum. The corrections have a
simple interpretation in terms of the dual of the minimization problem (3.1). Each dual
variable corresponds to the violation in a single triangle inequality, and each individual
correction results in a decrease in the violation. We continue until no triangle receives a
significant update.

Algorithm 3.1 displays the complete iterative scheme that performs triangle fixing along
with appropriate corrections.



Algorithm 3.1: Triangle Fixing For `2 norm.

TRIANGLE FIXING(D, ε)
Input: Input dissimilarity matrix D, tolerance ε
Output: M = argminX∈MN

‖X −D‖2.
for 1 ≤ i < j < k ≤ n

(zijk, zjki, zkij)← 0 {Initialize correction terms}
for 1 ≤ i < j ≤ n

eij ← 0 {Initial error values for each dissimilarity dij}
δ ← 1 + ε {Parameter for testing convergence}
while (δ > ε) {convergence test}

foreach triangle (i, j, k)
b← dki + djk − dij

µ← 1

3
(eij − ejk − eki − b) (?)

θ ← min{−µ, zijk} {Stay within half-space of constraint}
eij ← eij − θ, ejk ← ejk + θ, eki ← eki + θ (??)
zijk ← zijk − θ {Update correction term}

end foreach
δ ← sum of changes in the e values

end while
return M = D + E

Remark: Algorithm 3.1 is an efficient adaptation of Bregman’s method [1]. By itself,
Bregman’s method would suffer the same storage and computation costs as a general con-
vex optimization algorithm. Our triangle fixing operations allow us to compactly represent
and compute the intermediate variables required to solve the problem. The correctness and
convergence properties of Algorithm 3.1 follow from those of Bregman’s method. Further-
more, our algorithms are very easy to implement.

3.2 MN for the `1 and `∞ norms

The basic triangle fixing algorithm succeeds only when the norm used in (2.2) is strictly
convex. Hence, it cannot be applied directly to the `1 and `∞ cases. These require a more
sophisticated approach.

First, observe that the problem of minimizing the `1 norm of the changes can be written as
an LP:

min
e,f

0
T e + 1

T f

subject to Ae ≤ b, −e− f ≤ 0, e− f ≤ 0.
(3.4)

The auxiliary variable f can be interpreted as the absolute value of e. Similarly, minimizing
the `∞ norm of the changes can be accomplished with the LP

min
e,ζ

0
T e + ζ

subject to Ae ≤b, −e− ζ1 ≤ 0, e− ζ1 ≤ 0.
(3.5)

We interpret ζ = ‖e‖∞.

Solving these linear programs using standard software can be prohibitively expensive be-
cause of the large number of constraints. Moreover, the solutions are not unique because
the `1 and `∞ norms are not strictly convex. Instead, we replace the LP by a quadratic
program (QP) that is strictly convex and returns the solution of the LP that has minimum
`2-norm. For the `1 case, we have the following result.



Theorem 3.1 (`1 Metric Nearness). Let z = [e;f ] and c = [0;1] be partitioned confor-
mally. If (3.4) has a solution, then there exists a λ0 > 0, such that for all λ ≤ λ0,

argmin
z∈Z

‖z + λ−1c‖2 = argmin
z∈Z?

‖z‖2, (3.6)

where Z is the feasible set for (3.4) and Z? is the set of optimal solutions to (3.4). The
minimizer of (3.6) is unique.

Theorem 3.1 follows from a result of Mangasarian [9, Theorem 2.1-a-i]. A similar theorem
may be stated for the `∞ case.

The QP (3.6) can be solved using an augmented triangle-fixing algorithm since the ma-
jority of the constraints in (3.6) are triangle inequalities. As in the `2 case, the triangle
constraints are enforced using (3.3). Each remaining constraint is enforced by computing
an orthogonal projection onto the corresponding halfspace. We refer the reader to [5] for
the details.

3.3 MN for `p norms (1 < p <∞)

Next, we explain how to use triangle fixing to solve the MN problem for the remaining `p

norms, 1 < p < ∞. The computational costs are somewhat higher because the algorithm
requires solving a nonlinear equation. The problem may be phrased as

mine

1

p
‖e‖pp subject to Ae ≤ b. (3.7)

To enforce a triangle constraint optimally in the `p norm, we need to compute a projection
of the vector e onto the constraint set. Define ϕ(x) = 1

p ‖x‖
p
p, and note that (∇ϕ(x))i =

sgn(xi) |xi|
p−1. The projection of e onto the (i, j, k) violating constraint is the solution of

mine′ ϕ(e′)− ϕ(e)− 〈∇ϕ(e), e′ − e〉 subject to aT
ijke′ = bijk,

where aijk is the row of the constraint matrix corresponding to the triangle inequality
(i, j, k). The projection may be determined by solving

∇ϕ(e′) = ∇ϕ(e) + µijk aijk so that aT
ijke′ = bijk. (3.8)

Since aijk has only three nonzero entries, we see that e only needs to be updated in three
components. Therefore, in Algorithm 3.1 we may replace (?) by an appropriate numerical
computation of the parameter µijk and replace (??) by the computation of the new value
of e. Further details are available in [5].

4 Applications and Experiments

Replacing a general graph (dissimilarity matrix) by a metric graph (distance matrix) can
enable us to use efficient approximation algorithms for NP-Hard graph problems (MAX-
CUT clustering) that have guaranteed error for metric data, for example, see [7]. The error
from MN will carry over to the graph problem, while retaining the bounds on total error
incurred. As an example, constant factor approximation algorithms for MAX-CUT exist
for metric graphs [3], and can be used for clustering applications. See [4] for more details.

Applications that use dissimilarity values, such as clustering, classification, searching, and
indexing, could potentially be sped up if the data is metric. MN is a natural candidate for
enforcing metric properties on the data to permit these speedups.

We were originally motivated to formulate and solve MN by a problem that arose in connec-
tion with biological databases [13]. This problem involves approximating mPAM matrices,



which are a derivative of mutation probability matrices [2] that arise in protein sequencing.
They represent a certain measure of dissimilarity for an application in protein sequencing.
Owing to the manner in which these matrices are formed, they tend not to be distance ma-
trices. Query operations in biological databases have the potential to be dramatically sped
up if the data were metric (using a metric based indexing scheme). Thus, one approach is
to find the nearest distance matrix to each mPAM matrix and use that approximation in the
metric based indexing scheme.

We approximated various mPAM matrices by their nearest distance matrices. The relative
errors of the approximations ‖D −M‖/‖D‖ are reported in Table 1.

Table 1: Relative errors for mPAM dataset (`1, `2, `∞ nearness, respectively)

Dataset ‖D−M‖1

‖D‖1

‖D−M‖2

‖D‖2

‖D−M‖∞

‖D‖∞

mPAM50 0.339 0.402 0.278
mPAM100 0.142 0.231 0.206
mPAM150 0.054 0.121 0.151
mPAM250 0.004 0.025 0.042
mPAM300 0.002 0.017 0.056

4.1 Experiments
The MN problem has an input of size N = n(n − 1)/2, and the number of constraints is
roughly N3/2. We ran experiments to ascertain the empirical behavior of the algorithm.
Figure 1 shows log–log plots of the running time of our algorithms for solving the `1

1 2 3 4 5 6 7 8
−6

−4

−2

0

2

4

6

8

Log(N) −− N is the input size

L
o

g
(R

u
n

n
in

g
 t
im

e
 in

 s
e

co
n

d
s)

Log−Log plot showing runtime behavior of l
1
 MN

y=1.6x−6.3
Running Time

7 7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8
4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

6

6.2

Log(N) −− where N is the input size

L
o

g
(R

u
n

n
in

g
 t
im

e
 in

 s
e

co
n

d
s)

Log−Log plot of running time for l
2
 MN

y=1.5x − 6.1
Running time

Figure 1: Running time for `1 and `2 norm solutions (plots have different scales).

and `2 Metric Nearness Problems. Note that the time cost appears to be O(N 3/2), which
is linear in the number of constraints. The results plotted in the figure were obtained
by executing the algorithms on random dissimilarity matrices. The procedure was halted
when the distance values changed less than 10−3 from one iteration to the next. For both
problems, the results were obtained with a simple MATLAB implementation. Nevertheless,
this basic version outperforms MATLAB’s optimization package by one or two orders of
magnitude (depending on the problem), while numerically achieving similar results. A
more sophisticated (C or parallel) implementation could improve the running time even
more, which would allow us to study larger problems.

5 Discussion
In this paper, we have introduced the Metric Nearness problem, and we have developed al-
gorithms for solving it for `p nearness measures. The algorithms proceed by fixing violated



triangles in turn, while introducing correction terms to guide the algorithm to the global op-
timum. Our experiments suggest that the algorithms require O(N 3/2) time, where N is the
total number of distances, so it is linear in the number of constraints. An open problem is
to obtain an algorithm with better computational complexity.

Metric Nearness is a rich problem. It can be shown that a special case (allowing only
decreases in the dissimilarities) is identical with the All Pairs Shortest Path problem [10].
Thus one may check whether the N distances satisfy metric properties in O(APSP) time.
However, we are not aware if this is a lower bound.

It is also possible to incorporate other types of linear and convex constraints into the Metric
Nearness Problem. Some other possibilities include putting box constraints on the distances
(l ≤m ≤ u), allowing λ triangle inequalities (mij ≤ λ1mik +λ2mkj), or enforcing order
constraints (dij < dkl implies mij < mkl).

We plan to further investigate the application of MN to other problems in data mining,
machine learning, and database query retrieval.
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