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Abstract

We show that anomaly detection can be interpreted as a binary classifi-
cation problem. Using this interpretation we propose a support vector
machine (SVM) for anomaly detection. We then present some theoret-
ical results which include consistency and learning rates. Finally, we
experimentally compare our SVM with the standard one-class SVM.

1 Introduction

One of the most common ways to define anomalies is by saying that anomalies are not
concentrated (see e.g. [1, 2]). To make this precise let Q be our unknown data-generating
distribution on the input space X . Furthermore, to describe the concentration of Q we need
a known reference distribution µ on X . Let us assume that Q has a density h with respect
to µ. Then, the sets {h > ρ}, ρ > 0, describe the concentration of Q. Consequently, to
define anomalies in terms of the concentration we only have to fix a threshold level ρ > 0,
so that an x ∈ X is considered to be anomalous whenever x ∈ {h ≤ ρ}. Therefore our
goal is to find the density level set {h ≤ ρ}, or equivalently, the ρ-level set {h > ρ}. Note
that there is also a modification of this problem where µ is not known but can be sampled
from. We will see that our proposed method can handle both problems.

Finding density level sets is an old problem in statistics which also has some interesting ap-
plications (see e.g. [3, 4, 5, 6]) other than anomaly detection. Furthermore, a mathematical
framework similar to classical PAC-learning has been proposed in [7]. Despite this effort,
no efficient algorithm is known, which is a) consistent, i.e. it always finds the level set of
interest asymptotically, and b) learns with fast rates under realistic assumptions on h and
µ. In this work we propose such an algorithm which is based on an SVM approach.

Let us now introduce some mathematical notions. We begin with emphasizing that—as in
many other papers (see e.g. [5] and [6])—we always assume µ({h = ρ}) = 0. Now, let
T = (x1, . . . , xn) ∈ Xn be a training set which is i.i.d. according to Q. Then, a density
level detection algorithm constructs a function fT : X → R such that the set {fT > 0}
is an estimate of the ρ-level set {h > ρ} of interest. Since in general {fT > 0} does not
exactly coincide with {h > ρ} we need a performance measure which describes how well
{fT > 0} approximates the set {h > ρ}. Probably the best known performance measure
(see e.g. [6, 7] and the references therein) for measurable functions f : X → R is

Sµ,h,ρ(f) := µ
(

{f > 0} M {h > ρ}
)

,



where M denotes the symmetric difference. Obviously, the smaller Sµ,h,ρ(f) is, the more
{f > 0} coincides with the ρ-level set of h, and a function f minimizes Sµ,h,ρ if and
only if {f > 0} is µ-almost surely identical to {h > ρ}. Furthermore, for a sequence of
functions fn : X → R with Sµ,h,ρ(fn) → 0 we easily see that sign fn → 1{h>ρ} both
µ-almost and Q-almost surely if 1A denotes the indicator function of a set A. Finally, it
is important to note, that the performance measure Sµ,h,ρ is somehow natural in that it is
insensitive to µ-zero sets.

2 Detecting density levels is a classification problem

In this section we show how the density level detection (DLD) problem can be formulated
as a binary classification problem. To this end we write Y := {−1, 1} and define:

Definition 2.1 Let µ and Q be probability measures on X and s ∈ (0, 1). Then the proba-
bility measure Q 	s µ on X × Y is defined by

Q 	s µ (A) := sEx∼Q1A(x, 1) + (1 − s)Ex∼µ1A(x,−1)

for all measurable A ⊂ X × Y . Here we used the shorthand 1A(x, y) := 1A((x, y)).

Obviously, the measure P := Q	sµ can be associated with a binary classification problem
in which positive samples are drawn from Q and negative samples are drawn from µ. In-
spired by this interpretation let us recall that the binary classification risk for a measurable
function f : X → R and a distribution P on X × Y is defined by

RP (f) = P
(

{(x, y) : sign f(x) 6= y}
)

,

where we define sign t := 1 if t > 0 and sign t = −1 otherwise. Furthermore, we denote
the Bayes risk of P by RP := inf{RP (f)

∣

∣ f : X → R measurable}. We will show that
learning with respect to Sµ,h,ρ is equivalent to learning with respect to RP (.). To this end
we begin with the following easy to prove but fundamental proposition:

Proposition 2.2 Let µ and Q be probability measures on X such that Q has a density h
with respect to µ, and let s ∈ (0, 1). Then the marginal distribution of P := Q 	s µ on X
is PX = sQ + (1 − s)µ. Furthermore, we PX -a.s. have

P (y = 1|x) =
sh(x)

sh(x) + 1 − s
.

Note that the above formula for PX implies that the µ-zero sets of X are exactly the PX -
zero sets of X . Furthermore, Proposition 2.2 shows that every distribution P := Q 	s µ
with dQ := hdµ and s ∈ (0, 1) determines a triple (µ, h, ρ) with ρ := (1 − s)/s and
vice-versa. In the following we therefore use the shorthand SP (f) := Sµ,h,ρ(f). Let us
now compare RP (.) with SP (.). To this end we first observe that h(x) > ρ = 1−s

s
is

equivalent to sh(x)
sh(x)+1−s

> 1
2 . By Proposition 2.2 the latter is µ-almost surely equivalent

to η(x) := P (y = 1|x) > 1/2 and hence µ({η > 1/2} M {h > ρ}) = 0. Now recall,
that binary classification aims to discriminate {η > 1/2} from {η < 1/2}. Thus it is no
surprise that RP (.) can serve as a performance measure as the following theorem shows:

Theorem 2.3 Let µ and Q be distributions on X such that Q has a density h with respect to
µ. Let ρ > 0 satisfy µ({h = ρ}) = 0. We write s := 1

1+ρ
and define P := Q	sµ. Then for

all sequences (fn) of measurable functions fn : X → R the following are equivalent:

i) SP (fn) → 0.



ii) RP (fn) → RP .

In particular, for measurable f : X → R we have SP (f) = 0 if and only if RP (f) = RP .

Proof: For n ∈ N we define En := {fn > 0} M {h > ρ}. Since µ({h > ρ} M {η >
1
2}) = 0 it is easy to see that the classification risk of fn can be computed by

RP (fn) = RP +

∫

En

|2η − 1|dPX . (1)

Now, {|2η−1| = 0} is a µ-zero set and hence a PX -zero set. This implies that the measures
|2η − 1|dPX and PX are absolutely continuous with respect to each other. Furthermore,
we have already observed after Proposition 2.2 that PX and µ are absolutely continuous
with respect to each other. Now, the assertion follows from SP (fn) = µ(En).

Theorem 2.3 shows that instead of using SP (.) as a performance measure for the DLD
problem one can alternatively use the classification risk RP (.). Therefore, we will establish
some basic properties of this performance measure in the following. To this end we write
I(y, t) := 1(−∞,0](yt), y ∈ Y and t ∈ R, for the standard classification loss function.
With this notation we can easily compute RP (f):

Proposition 2.4 Let µ and Q be probability measures on X . For ρ > 0 we write s := 1
1+ρ

and define P := Q 	s µ. Then for all measurable f : X → R we have

RP (f) =
1

1 + ρ
EQI(1, sign f) +

ρ

1 + ρ
EµI(−1, sign f) .

It is interesting that the classification risk RP (.) is strongly connected with another ap-
proach for the DLD problem which is based on the so-called excess mass (see e.g. [4], [5],
[6], and the references therein). To be more precise let us first recall that the excess mass
of a measurable function f : X → R is defined by

EP (f) := Q({f > 0}) − ρµ({f > 0}) ,

where Q, ρ and µ have the usual meaning. The following proposition, that shows that
RP (.) and EP (.) are essentially the same, can be easily checked:

Proposition 2.5 Let µ and Q be probability measures on X . For ρ > 0 we write s := 1
1+ρ

and define P := Q 	s µ. Then for all measurable f : X → R we have

EP (f) = 1 − (1 + ρ)RP (f) .

If Q is an empirical measure based on a training set T in the definition of EP (.) we obtain
the empirical excess mass which we denote by ET (.). Then given a function class F the
(empirical) excess mass approach chooses a function fT ∈ F which maximizes ET (.)
within F . Since the above proposition shows

ET (f) = 1 − 1

n

n
∑

i=1

I(1, sign f(xi)) − ρEµI(−1, sign f) .

we see that this approach is actually a type of empirical risk minimization (ERM).

In the above mentioned papers the analysis of the excess mass approach needs an additional
assumption on the behaviour of h around the level ρ. Since this condition can be used to
establish a quantified version of Theorem 2.3 we will recall it now.



Definition 2.6 Let µ be a distribution on X and h : X → [0,∞) be a measurable function
with

∫

hdµ = 1, i.e. h is a density with respect to µ. For ρ > 0 and 0 ≤ q ≤ ∞ we say
that h is of ρ-exponent q if there exists a constant C > 0 such that for all sufficiently small
t > 0 we have

µ
(

{|h − ρ| ≤ t}
)

≤ Ctq . (2)

Condition (2) was first considered in [5, Thm. 3.6.]. This paper also provides an example
of a class of densities on R

d, d ≥ 2, which has exponent q = 1. Later, Tsybakov [6, p. 956]
used (2) for the analysis of a DLD method which is based on a localized version of the
empirical excess mass approach. Surprisingly, (2) is satisfied if and only if P := Q 	s µ
has Tsybakov exponent q in the sense of [8], i.e.

PX

(

|2η − 1| ≤ t
)

≤ C · tq (3)

for some constant C > 0 and all sufficiently small t > 0 (see the proof of Theorem 2.7
for (2) ⇒ (3) and [9] for the other direction). Recall that recently (3) has played a crucial
role for establishing learning rates faster than n− 1

2 for ERM algorithms and SVM’s (see
e.g. [10] and [8]). Remarkably, it was already observed in [11], that the classification
problem can be analyzed by methods originally developed for the DLD problem. However,
to our best knowledge the exact relation between the DLD problem and binary classification
has not been presented, yet. In particular, it has not been observed yet, that this relation
opens a non-heuristic way to use classification methods for the DLD problem as we will
demonstrate by example in the next section.

Let us now use the ρ-exponent to establish inequalities between SP (.) and RP (.):

Theorem 2.7 Let ρ > 0 and µ and Q be probability measures on X such that Q has a
density h with respect to µ. For s := 1

1+ρ
we write P := Q 	s µ. Then we have

i) If h is bounded there is a c > 0 such that for all measurable f : X → R we have

RP (f) −RP ≤ cSP (f) .

ii) If h has ρ-exponent q there is a c > 0 such that for all measurable f : X → R we have

SP (f) ≤ c
(

RP (f) −RP

)

q

1+q .

Sketch of the proof: The first assertion directly follows from (1) and Proposition 2.2. For
the second assertion we first show (2) ⇒ (3). To this end we observe that for 0 < t < 1

2 we
have Q

({

|h − ρ| ≤ t
})

≤ (1 + ρ)µ
({

|h − ρ| ≤ t
})

. Thus there exists a C̃ > 0 such that
PX

(

{|h − ρ| ≤ t}
)

≤ C̃tq for all 0 < t < 1
2 . Furthermore, |2η − 1| =

∣

∣

h−ρ
h+ρ

∣

∣ implies

{

|2η − 1| ≤ t
}

=
{1 − t

1 + t
ρ ≤ h ≤ 1 + t

1 − t
ρ
}

,

whenever 0 < t < 1
2 . Let us now define tl := 2t

1+t
and tr := 2t

1−t
. This gives 1 − tl = 1−t

1+t

and 1 + tr = 1+t
1−t

. Furthermore, we obviously also have tl ≤ tr. Therefore we find
{1 − t

1 + t
ρ ≤ h ≤ 1 + t

1 − t
ρ
}

⊂
{

|h − ρ| ≤ trρ
}

,

which shows (3). Now the assertion follows from [10, Prop. 1].

3 A support vector machine for density level detection

One of the benefits of interpreting the DLD problem as a classification problem is that we
can construct an SVM for the DLD problem. To this end let k : X × X → R be a positive



definite kernel with reproducing kernel Hilbert space (RKHS) H . Furthermore, let µ be
a known probability measure on X and l : Y × R → [0,∞) be the hinge loss function,
i.e. l(y, t) := max{0, 1 − yt}, y ∈ Y , t ∈ R. Then for a training set T = (x1, . . . , xn) ∈
Xn, a regularization parameter λ > 0, and ρ > 0 our SVM for the DLD problem chooses
a pair (fT,µ,λ, bT,µ,λ) ∈ H × R which minimizes

λ‖f‖2
H +

1

(1 + ρ)n

n
∑

i=1

l(1, f(xi) + b) +
ρ

1 + ρ
Ex∼µl(−1, f(x) + b) (4)

in H × R. The corresponding decision function of this SVM is fT,µ,λ + bT,µ,λ : X → R.

Although the measure µ is known, almost always the expectation Ex∼µl(−1, f(x)) can
be only numerically approximated by using finitely many function evaluations of f . Un-
fortunately, since the hinge loss is not differentiable we do not know a deterministic
method to choose these function evaluations efficiently. Therefore in the following we
will use points T ′ := (z1, . . . , zm) which are randomly sampled from µ in order to ap-
proximate Ex∼µl(−1, f(x)). We denote the corresponding approximate solution of (4) by
(fT,T ′,λ, bT,T ′,λ). Since this modification of (4) is identical to the standard SVM formula-
tion besides the weighting factors in front of the empirical l-risk terms we do not discuss
algorithmic issues. However note that this approach simultaneously addresses the original
“µ is known” and the modified “µ can be sampled from” problems described in the in-
troduction. Furthermore it is also closely related to some heuristic methods for anomaly
detection that are based on artificial samples (see [9] for more information).

The fact that the SVM for DLD essentially coincides with the standard L1-SVM also allows
us to modify many known results for these algorithms. For simplicity we will only state
results for the Gaussian RBF kernel with width 1/σ, i.e. k(x, x′) = exp(−σ2‖x − x′‖2

2),
x, x′ ∈ R

d, and the case m = n. More general results can be found in [12, 9]. We begin
with a consistency result with respect to the performance measure RP (.). Recall that by
Theorem 2.3 this is equivalent to consistency with respect to SP (.):

Theorem 3.1 Let X ⊂ R
d be compact and k be the Gaussian RBF kernel with width 1/σ

on X . Furthermore, let ρ > 0, and µ and Q be distributions on X such that Q has a
density h with respect to µ. For s := 1

1+ρ
we write P := Q 	s µ. Then for all positive

sequences (λn) with λn → 0 and nλ1+δ
n → ∞ for some δ > 0, and for all ε > 0 we have

lim
n→∞

(Q ⊗ µ)n
(

(T, T ′) ∈ (X × X)n : RP (fT,T ′,λ + bT,T ′,λ) > RP + ε
)

= 0 .

Sketch of the proof: Let us introduce the shorthand ν = Q ⊗ µ for the product measure
of Q and µ. Moreover, for a measurable function f : X → R we define the function
g ◦ f : X × X → R by

g ◦ f(x, x′) :=
1

1 + ρ
l(1, f(x)) +

ρ

1 + ρ
l(−1, f(x′)) , x, x′ ∈ X.

Furthermore, we write l ◦ f(x, y) := l(y, f(x)), x ∈ X , y ∈ Y . Then it is easy to check
that we always have Eνg ◦ f = EP l ◦ f . Analogously, we see ET⊗T ′g ◦ f = ET	sT ′ l ◦ f
if T ⊗ T ′ denotes the product measure of the empirical measures based on T and T ′. Now,
using Hoeffding’s inequality for ν it is easy to establish a concentration inequality in the
sense of [13, Lem. III.5]. The rest of the proof is analogous to the steps in [13] since these
steps are independent of the specific structure of the data-generating measure.

In general, we cannot obtain convergence rates in the above theorem without assuming
specific conditions on h, ρ, and µ. We will now present such a condition which can be used
to establish rates. To this end we write

τx :=

{

d(x, {h > ρ}) if x ∈ {h < ρ}
d(x, {h < ρ}) if x ∈ {h ≥ ρ} ,



where d(x,A) denotes the Euclidian distance between x and a set A. Now we define:

Definition 3.2 Let µ be a distribution on X ⊂ R
d and h : X → [0,∞) be a measurable

function with
∫

hdµ = 1, i.e. h is a density with respect to µ. For ρ > 0 and 0 < α ≤ ∞
we say that h has geometric ρ-exponent α if

∫

X

τ−αd
x |h − ρ|dµ < ∞ .

Since {h > ρ} and {h ≤ ρ} are the classes which have to be discriminated when in-
terpreting the DLD problem as a classification problem it is easy to check by Proposi-
tion 2.2 that h has geometric ρ-exponent α if and only if for P := Q 	s µ we have
(x 7→ τ−1

x ) ∈ Lαd(|2η − 1|dPX). The latter is a sufficient condition for P to have geo-
metric noise exponent α in the sense of [8]. We can now state our result on learning rates
which is proved in [12].

Theorem 3.3 Let X be the closed unit ball of the Euclidian space R
d, and µ and Q be

distributions on X such that dQ = hdµ. For fixed ρ > 0 assume that the density h has
both ρ-exponent 0 < q ≤ ∞ and geometric ρ-exponent 0 < α < ∞. We define

λn :=

{

n− α+1
2α+1 if α ≤ q+2

2q

n−
2(α+1)(q+1)

2α(q+2)+3q+4 otherwise ,

and σn := λ
− 1

(α+1)d

n in both cases. For s := 1
1+ρ

we write P := Q 	s µ. Then for all
ε > 0 there exists a constant C > 0 such that for all x ≥ 1 and all n ≥ 1 the SVM using
λn and Gaussian RBF kernel with width 1/σn satisfies

(Q⊗µ)n
(

(T, T ′) ∈ (X ×X)n : RP (fT,T ′,λ + bT,T ′,λ) > RP +Cx2n− α
2α+1+ε

)

≤ e−x

if α ≤ q+2
2q

and

(Q⊗µ)n
(

(T, T ′) ∈ X2n : RP (fT,T ′,λ+bT,T ′,λ) > RP +Cx2n−
2α(q+1)

2α(q+2)+3q+4
+ε

)

≤ e−x

otherwise. If α = ∞ the latter holds if σn = σ is a constant with σ > 2
√

d.

Remark 3.4 With the help of Theorem 2.7 we immediately obtain rates with respect to the
performance measure SP (.). It turns out that these rates are very similar to those in [5] and
[6] for the empirical excess mass approach.

4 Experiments

We present experimental results for anomaly detection problems where the set X is a subset
of R

d. Two SVM type learning algorithms are used to produce functions f which declare
the set {x : f(x) < 0} anomalous. These algorithms are compared based on their risk
RP (f). The data in each problem is partitioned into three pairs of sets; the training sets
(T, T ′), the validation sets (V, V ′) and the test sets (W,W ′). The sets T , V and W contain
samples drawn from Q and the sets T ′,V ′ and W ′ contain samples drawn from µ. The
training and validation sets are used to design f and the test sets are used to estimate its
performance by computing an empirical version of RP (f) that we denote R(W,W ′)(f).

The first learning algorithm is the density level detection support vector machine (DLD–
SVM) with Gaussian RBF kernel described in the previous section. With λ and σ2 fixed



and the expected value Ex∼µl(−1, f(x) + b) in (4) replaced with an empirical estimate
based on T ′ this formulation can be solved using, for example, the C–SVC option in the
LIBSVM software [14] by setting C = 1 and setting the class weights to w1 = 1/

(

|T |(1 +

ρ)
)

and w−1 = ρ/
(

|T ′|(1 + ρ)
)

. The regularization parameters λ and σ2 are chosen to
(approximately) minimize the empirical risk R(V,V ′)(f) on the validation sets. This is
accomplished by employing a grid search over λ and a combined grid/iterative search over
σ2. In particular, for each fixed grid value of λ we seek a minimizer over σ2 by evaluating
the validation risk at a coarse grid of σ2 values and then performing a Golden search over
the interval defined by the two σ2 values on either side of the coarse grid minimum. As the
overall search proceeds the (λ, σ2) pair with the smallest validation risk is retained.

The second learning algorithm is the one–class support vector machine (1CLASS–SVM)
introduced by Schölkopf et al. [15]. Due to its “one–class” nature this method does not
use the set T ′ in the production of f . Again we employ the Gaussian RBF kernel with
parameter σ2. The one–class algorithm in Schölkopf et al. contains a parameter ν which
controls the size of the set {x ∈ T : f(x) ≤ 0} (and therefore controls the measure
Q(f ≤ 0) through generalization). To make a valid comparison with the DLD–SVM we
determine ν automatically as a function of ρ. In particular both ν and σ2 are chosen to
(approximately) minimize the validation risk using the search procedure described above
for the DLD–SVM where the grid search for λ is replaced by a Golden search (over [0, 1])
for ν.

Data for the first experiment are generated as follows. Samples of the random variable
x ∼ Q are generated by transforming samples of the random variable u that is uniformly
distributed over [0, 1]27. The transform is x = Au where A is a 10–by–27 matrix whose
rows contain between m = 2 and m = 5 non-zero entries with value 1/m. Thus the
support of Q is the hypercube [0, 1]10 and Q is concentrated about its centers. Partial
overlap in the nonzero entries across the rows of A guarantee that the components of x are
partially correlated. We chose µ to be the uniform distribution over [0, 1]10. Data for the
second experiment are identical to the first except that the vector (0, 0, 0, 0, 0, 0, 0, 0, 0, 1)
is added to the samples of x with probability 0.5. This gives a bi-modal distribution Q and
since the support of the last component is extended to [0, 2] the corresponding component
of µ is also extended to this range. The training and validation set sizes are |T | = 1000,
|T ′| = 2000, |V | = 500, and |V ′| = 2000. The test set sizes |W | = 100, 000 and
|W ′| = 100, 000 are large enough to provide very accurate estimates of risk. The λ grid
for the DLD–SVM method consists of 15 values ranging from 10−7 to 1 and the coarse σ2

grid for the DLD–SVM and 1CLASS–SVM methods consists of 9 values that range from
10−3 to 102. The learning algorithms are applied for values of ρ ranging from 10−2 to
102. Figure 1(a) plots the risk R(W,W ′) versus ρ for the two learning algorithms. In both
experiments the performance of DLD–SVM is superior to 1CLASS–SVM at smaller values
of ρ. The difference in the bi–modal case is substantial. Comparisons for larger sizes of
|T | and |V | yield similar results, but at smaller sample sizes the superiority of DLD–SVM
is even more pronounced. This is significant because ρ � 1 appears to have little utility
in the general anomaly detection problem since it defines anomalies in regions where the
concentration of Q is much larger than the concentration of µ, which is contrary to our
premise that anomalies are not concentrated.

The third experiment considers a real world application in cybersecurity. The goal is to
monitor the network traffic of a computer and determine when it exhibits anomalous be-
havior. The data for this experiment was collected from an active computer in a normal
working environment over the course of 16 months. Twelve features were computed over
each 1 hour time frame to give a total of 11664 12–dimensional feature vectors. These fea-
tures are normalized to the range [0, 1] and treated as samples from Q. We chose µ to be the
uniform distribution over [0, 1]12. The training, validation and test set sizes are |T | = 4000,
|T ′| = 10000, |V | = 2000, |V ′| = 100, 000, |W | = 5664 and |W ′| = 100, 000. The λ
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Figure 1: Comparison of DLD–SVM and 1CLASS–SVM. The curves with extension -1
and -2 in Figure 1(a) correspond to experiments 1 and 2 respectively.

grid for the DLD–SVM method consists of 7 values ranging from 10−7 to 10−1 and the
coarse σ2 grid for the DLD–SVM and 1CLASS–SVM methods consists of 6 values that
range from 10−3 to 102. The learning algorithms are applied for values of ρ ranging from
0.05 to 50.0. Figure 1(b) plots the risk R(W,W ′) versus ρ for the two learning algorithms.
The performance of DLD–SVM is superior to 1CLASS–SVM at all values of ρ.
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