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Abstract 

Machine learning is often used to automatically solve human tasks. 
In this paper, we look for tasks where machine learning algorithms 
are not as good as humans with the hope of gaining insight into 
their current limitations. We studied various Human Interactive 
Proofs (HIPs) on the market, because they are systems designed to 
tell computers and humans apart by posing challenges presumably 
too hard for computers. We found that most HIPs are pure 
recognition tasks which can easily be broken using machine 
learning. The harder HIPs use a combination of segmentation and 
recognition tasks. From this observation, we found that building 
segmentation tasks is the most effective way to confuse machine 
learning algorithms. This has enabled us to build effective HIPs 
(which we deployed in MSN Passport), as well as design 
challenging segmentation tasks for machine learning algorithms. 

1  Introduct ion 

The OCR problem for high resolution printed text has virtually been solved 10 years 
ago [1]. On the other hand, cursive handwriting recognition today is still too poor 
for most people to rely on. Is there a fundamental difference between these two 
seemingly similar problems? 

To shed more light on this question, we study problems that have been designed to 
be difficult for computers. The hope is that we will get some insight on what the 
stumbling blocks are for machine learning and devise appropriate tests to further 
understand their similarities and differences. 

Work on distinguishing computers from humans traces back to the original Turing 
Test [2] which asks that a human distinguish between another human and a machine 
by asking questions of both. Recent interest has turned to developing systems that 
allow a computer to distinguish between another computer and a human. These 
systems enable the construction of automatic filters that can be used to prevent 
automated scripts from utilizing services intended for humans [4]. Such systems 
have been termed Human Interactive Proofs (HIPs) [3] or Completely Automated 
Public Turing Tests to Tell Computers and Humans Apart (CAPTCHAs) [4]. An 
overview of the work in this area can be found in [5]. Construction of HIPs that are 
of practical value is difficult because it is not sufficient to develop challenges at 



 

which humans are somewhat more successful than machines. This is because the 
cost of failure for an automatic attacker is minimal compared to the cost of failure 
for humans. Ideally a HIP should be solved by humans more than 80% of the time, 
while an automatic script with reasonable resource use should succeed less than 
0.01% of the time. This latter ratio (1 in 10,000) is a function of the cost of an 
automatic trial divided by the cost of having a human perform the attack. 

This constraint of generating tasks that are failed 99.99% of the time by all 
automated algorithms has generated various solutions which can easily be sampled 
on the internet. Seven different HIPs, namely, Mailblocks, MSN (before April 28th, 
2004), Ticketmaster, Yahoo, Yahoo v2 (after Sept’04), Register, and Google, will 
be given as examples in the next section. We will show in Section 3 that machine-
learning-based attacks are far more successful than 1 in 10,000. Yet, some of these 
HIPs are harder than others and could be made even harder by identifying the 
recognition and segmentation parts, and emphasizing the latter. Section 4 presents 
examples of more difficult HIPs which are much more respectable challenges for 
machine learning, and yet surprisingly easy for humans. The final section discusses 
a (known) weakness of machine learning algorithms and suggests designing simple 
artificial datasets for studying this weakness. 

2  Examples of HIPs 

The HIPs explored in this paper are made of characters (or symbols) rendered to an 
image and presented to the user. Solving the HIP requires identifying all characters 
in the correct order. The following HIPs can be sampled from the web: 

Mailblocks: While signing up for free email service with mailblocks 
(www.mailblocks.com), you will find HIP challenges of the type: 

   

MSN: While signing up for free e-mail with MSN Hotmail (www.hotmail.com), you 
will find HIP challenges of the type: 

   

Register.com: While requesting a whois lookup for a domain at www.register.com, 
you will HIP challenges of the type: 

   

Yahoo!/EZ-Gimpy (CMU): While signing up for free e-mail service with Yahoo! 
(www.yahoo.com), you will receive HIP challenges of the type: 

   

   

Yahoo! (version 2): Starting in August 2004, Yahoo! introduced their second 
generation HIP. Three examples are presented below:  



 

   
Ticketmaster: While looking for concert tickets at www.ticketmaster.com, you 
will receive HIP challenges of the type: 

     

Google/Gmail: While signing up for free e-mail with Gmail at www.google.com, 
one will receive HIP challenges of the type: 

   

While solutions to Yahoo HIPs are common English words, those for ticketmaster 
and Google do not necessarily belong to the English dictionary. They appear to have 
been created using a phonetic generator [8]. 

3  Using machine learning to  break HIPs  

Breaking HIPs is not new. Mori and Malik [7] have successfully broken the EZ-
Gimpy (92% success) and Gimpy (33% success) HIPs from CMU. Our approach 
aims at an automatic process for solving multiple HIPs with minimum human 
intervention, using machine learning. In this paper, our main goal is to learn more 
about the common strengths and weaknesses of these HIPs rather than to prove that 
we can break any one HIP in particular with the highest possible success rate. We 
have results for six different HIPs: EZ-Gimpy/Yahoo, Yahoo v2, mailblocks, 
register, ticketmaster, and Google. 

To simplify our study, we will not be using language models in our attempt to break 
HIPs. For example, there are only about 600 words in the EZ-Gimpy dictionary [7], 
which means that a random guess attack would get a success rate of 1 in 600 (more 
than enough to break the HIP, i.e., greater than 0.01% success). HIPs become harder 
when no language model is used. Similarly, when a HIP uses a language model to 
generate challenges, success rate of attacks can be significantly improved by 
incorporating the language model. Further, since the language model is not common 
to all HIPs studied, it was not used in this paper. 

Our generic method for breaking all of these HIPs is to write a custom algorithm to 
locate the characters, and then use machine learning for recognition. Surprisingly, 
segmentation, or finding the characters, is simple for many HIPs which makes the 
process of breaking the HIP particularly easy. Gimpy uses a single constant 
predictable color (black) for letters even though the background color changes. We 
quickly realized that once the segmentation problem is solved, solving the HIP 
becomes a pure recognition problem, and it can trivially be solved using machine 
learning. Our recognition engine is based on neural networks [6][9]. It yielded a 
0.4% error rate on the MNIST database, uses little memory, and is very fast for 
recognition (important for breaking HIPs). 

For each HIP, we have a segmentation step, followed by a recognition step. It 
should be stressed that we are not trying to solve every HIP of a given type i.e., our 
goal is not 100% success rate, but something efficient that can achieve much better 
than 0.01%. 



 

In each of the following experiments, 2500 HIPs were hand labeled and used as 
follows (a) recognition (1600 for training, 200 for validation, and 200 for testing), 
and (b) segmentation (500 for testing segmentation). For each of the five HIPs, a 
convolution neural network, identical to the one described in [6], was trained and 
tested on gray level character images centered on the guessed character positions 
(see below). The trained neural network became the recognizer. 

3 . 1  M ail bl oc k s  

To solve the HIP, we select the red channel, binarize and erode it, extract the largest 
connected components (CCs), and breakup CCs that are too large into two or three 
adjacent CCs. Further, vertically overlapping half character size CCs are merged. 
The resulting rough segmentation works most of the time. Here is an example: 

   

For instance, in the example above, the NN would be trained, and tested on the 
following images: 

     … 

The end-to-end success rate is 88.8% for segmentation, 95.9% for recognition 
(given correct segmentation), and (0.888)*(0.959)7 = 66.2% total. Note that most of 
the errors come from segmentation, even though this is where all the custom 
programming was invested. 

3 . 2  Re gi s ter  

The procedure to solve HIPs is very similar. The image was smoothed, binarized, 
and the largest 5 connected components were identified. Two examples are 
presented below: 

    

    

The end-to-end success rate is 95.4% for segmentation, 87.1% for recognition 
(given correct segmentation), and (0.954)*(0.871)5 = 47.8% total.  

3 . 3  Y ahoo/ EZ-G i mpy 

Unlike the mailblocks and register HIPs, the Yahoo/EZ-Gimpy HIPs are richer in 
that a variety of backgrounds and clutter are possible. Though some amount of text 
warping is present, the text color, size, and font have low variability. Three simple 
segmentation algorithms were designed with associated rules to identify which 
algorithm to use. The goal was to keep these simple yet effective: 

a) No mesh: Convert to grayscale image, threshold to black and white, select 
large CCs with sizes close to HIP char sizes. One example:  

   



 

b) Black mesh: Convert to grayscale image, threshold to black and white, 
remove vertical and horizontal line pixels that don’t have neighboring 
pixels, select large CCs with sizes close to HIP char sizes. One example: 

   

c) White mesh: Convert to grayscale image, threshold to black and white, add 
black pixels (in white line locations) if there exist neighboring pixels, select 
large CCs with sizes close to HIP char sizes. One example: 

   

Tests for black and white meshes were performed to determine which segmentation 
algorithm to use. The end-to-end success rate was 56.2% for segmentation (38.2% 
came from a), 11.8% from b), and 6.2% from c), 90.3% for recognition (given 
correct segmentation), and (0.562)*(0.903)4.8 = 34.4% total. The average length of a 
Yahoo HIP solution is 4.8 characters. 

3 . 4  Ti ck etmaste r  

The procedure that solved the Yahoo HIP is fairly successful at solving some of the 
ticket master HIPs. These HIPs are characterized by cris-crossing lines at random 
angles clustered around 0, 45, 90, and 135 degrees. A multipronged attack as in the 
Yahoo case (section 3.3) has potential. In the interests of simplicity, a single attack 
was developed: Convert to grayscale, threshold to black and white, up-sample 
image, dilate first then erode, select large CCs with sizes close to HIP char sizes. 
One example: 

   

The dilate-erode combination causes the lines to be removed (along with any thin 
objects) but retains solid thick characters. This single attack is successful in 
achieving an end-to-end success rate of 16.6% for segmentation, the recognition rate 
was 82.3% (in spite of interfering lines), and (0.166)*(0.823)6.23 = 4.9% total. The 
average HIP solution length is 6.23 characters. 

3 . 5  Y ahoo ve r s i on 2  

The second generation HIP from Yahoo had several changes: a) it did not use words 
from a dictionary or even use a phonetic generator, b) it uses only black and white 
colors, c) uses both letters and digits, and d) uses connected lines and arcs as clutter. 
The HIP is somewhat similar to the MSN/Passport HIP which does not use a 
dictionary, uses two colors, uses letters and digits, and background and foreground 
arcs as clutter. Unlike the MSN/Passport HIP, several different fonts are used. A 
single segmentation attack was developed: Remove 6 pixel border, up-sample, dilate 
first then erode, select large CCs with sizes close to HIP char sizes. The attack is 
practically identical to that used for the ticketmaster HIP with different 
preprocessing stages and slightly modified parameters. Two examples: 

   



 

   

This single attack is successful in achieving an end-to-end success rate of 58.4% for 
segmentation, the recognition rate was 95.2%, and (0.584)*(0.952)5 = 45.7% total. 
The average HIP solution length is 5 characters. 

3 . 6  G oogl e / GM ail  

The Google HIP is unique in that it uses only image warp as a means of distorting 
the characters. Similar to the MSN/Passport and Yahoo version 2 HIPs, it is also 
two color. The HIP characters are arranged closed to one another (they often touch) 
and follow a curved baseline. The following very simple attack was used to segment 
Google HIPs: Convert to grayscale, up-sample, threshold and separate connected 
components.  

a)    b)   

This very simple attack gives an end-to-end success rate of 10.2% for segmentation, 
the recognition rate was 89.3%, giving (0.102)*(0.893)6.5 = 4.89% total probability 
of breaking a HIP. Average Google HIP solution length is 6.5 characters. This can 
be significantly improved upon by judicious use of dilate-erode attack. A direct 
application doesn’t do as well as it did on the ticketmaster and yahoo HIPs (because 
of the shear and warp of the baseline of the word). More successful and complicated 
attacks might estimate and counter the shear and warp of the baseline to achieve 
better success rates. 

4  Lessons learned from breaking HIPs 

From the previous section, it is clear that most of the errors come from incorrect 
segmentations, even though most of the development time is spent devising custom 
segmentation schemes. This observation raises the following questions: Why is 
segmentation a hard problem? Can we devise harder HIPs and datasets? Can we 
build an automatic segmentor? Can we compare classification algorithms based on 
how useful they are for segmentation? 

4 . 1  The  segme ntat i on  pr obl e m 

As a review, segmentation is difficult for the following reasons: 
1. Segmentation is computationally expensive. In order to find valid patterns, a 

recognizer must attempt recognition at many different candidate locations. 
2. The segmentation function is complex. To segment successfully, the system 

must learn to identify which patterns are valid among the set of all possible 
valid and non-valid patterns. This task is intrinsically more difficult than 
classification because the space of input is considerably larger. Unlike the space 
of valid patterns, the space of non-valid patterns is typically too vast to sample. 
This is a problem for many learning algorithms which yield too many false 
positives when presented non-valid patterns. 

3. Identifying valid characters among a set of valid and invalid candidates is a 
combinatorial problem. For example, correctly identifying which 8 characters 
among 20 candidates (assuming 12 false positives), has a 1 in 125,970 (20 
choose 8) chances of success by random guessing. 



 

4 . 2  B ui l d i ng be t te r/ har de r H IPs  

We can use what we have learned to build better HIPs. For instance the HIP below 
was designed to make segmentation difficult and a similar version has been 
deployed by MSN Passport for hotmail registrations (www.hotmail.com): 

 
The idea is that the additional arcs are themselves good candidates for false 
characters. The previous segmentation attacks would fail on this HIP. Furthermore, 
simple change of fonts, distortions, or arc types would require extensive work for 
the attacker to adjust to. We believe HIPs that emphasize the segmentation problem, 
such as the above example, are much stronger than the HIPs we examined in this 
paper, which rely on recognition being difficult. Pushing this to the extreme, we can 
easily generate the following HIPs: 

   

Despite the apparent difficulty of these HIPs, humans are surprisingly good at 
solving these, indicating that humans are far better than computers at segmentation. 
This approach of adding several competing false positives can in principle be used 
to automatically create difficult segmentation problems or benchmarks to test 
classification algorithms. 

4 . 3  B ui l di ng an automat i c  se gme ntor  

To build an automatic segmentor, we could use the 
following procedure. Label characters based on 
their correct position and train a recognizer. Apply 
the trained recognizer at all locations in the HIP 
image. Collect all candidate characters identified 
with high confidence by the recognizer. Compute 
the probability of each combination of candidates 
(going from left to right), and output the solution 
string with the highest probability. This is better 
illustrated with an example.  

Consider the following HIP (to the right). The 
trained neural network has these maps (warm 
colors indicate recognition) that show that K, Y, 
and so on are correctly identified. However, the 
maps for 7 and 9 show several false positives. In 
general, we would get the following color coded 
map for all the different candidates: 

 

 HIP 

 K 

 Y 

 B 

 7 

 9 

 



 

With a threshold of 0.5 on the network’s outputs, the map obtained is: 

 

We note that there are several false positives for each true positive. The number of 
false positives per true positive character was found to be between 1 and 4, giving a 
1 in C(16,8) = 12,870 to 1 in C(32,8) = 10,518,300 random chance of guessing the 
correct segmentation for the HIP characters. These numbers can be improved upon 
by constraining solution strings to flow sequentially from left to right and by 
restricting overlap. For each combination, we compute a probability by multiplying 
the 8 probabilities of the classifier for each position. The combination with the 
highest probability is the one proposed by the classifier. We do not have results for 
such an automatic segmentor at this time. It is interesting to note that with such a 
method a classifier that is robust to false positives would do far better than one that 
is not. This suggests another axis for comparing classifiers.  

5  Conclusion 

In this paper, we have successfully applied machine learning to the problem of 
solving HIPs. We have learned that decomposing the HIP problem into 
segmentation and recognition greatly simplifies analysis. Recognition on even 
unprocessed images (given segmentation is a solved) can be done automatically 
using neural networks. Segmentation, on the other hand, is the difficulty 
differentiator between weaker and stronger HIPs and requires custom intervention 
for each HIP. We have used this observation to design new HIPs and new tests for 
machine learning algorithms with the hope of improving them. 

Ac k nowl e dge me nts  

We would like to acknowledge Chau Luu and Eric Meltzer for their help with 
labeling and segmenting various HIPs. We would also like to acknowledge Josh 
Benaloh and Cem Paya for stimulating discussions on HIP security. 

Re fer e nce s  

[1] Baird HS (1992), “Anatomy of a versatile page reader,” IEEE Pro., v.80, pp. 1059-1065. 

[2] Turing AM (1950), “Computing Machinery and Intelligence,” Mind, 59:236, pp. 433-460.  

[3] First Workshop on Human Interactive Proofs, Palo Alto, CA, January 2002. 

[4] Von Ahn L, Blum M, and Langford J, The Captcha Project. http://www.captcha.net 

[5] Baird HS and Popat K (2002) “Human Interactive Proofs and Document Image 
Analysis,” Proc. IAPR 2002 Workshop on Document Analysis Systerms, Princeton, NJ. 

[6] Simard PY, Steinkraus D, and Platt J, (2003) “Best Practice for Convolutional Neural 
Networks Applied to Visual Document Analysis,” in International Conference on Document 
Analysis and Recognition (ICDAR), pp. 958-962, IEEE Computer Society, Los Alamitos. 

[7] Mori G, Malik J (2003), “Recognizing Objects in Adversarial Clutter: Breaking a Visual 
CAPTCHA,” Proc. of the Computer Vision and Pattern Recognition (CVPR) Conference, 
IEEE Computer Society, vol.1, pages:I-134 - I-141, June 18-20, 2003 

[8] Chew, M. and Baird, H. S. (2003), “BaffleText: a Human Interactive Proof,” Proc., 
10th IS&T/SPIE Document Recognition & Retrieval Conf., Santa Clara, CA, Jan. 22. 

[9] LeCun Y, Bottou L, Bengio Y, and Haffner P, “Gradient-based learning applied to 
document recognition,’ Proceedings of the IEEE, Nov. 1998. 


