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Abstract

The problem of detecting “atypical objects” or “outliers” is one of the
classical topics in (robust) statistics. Recently, it has been proposed to
address this problem by means of one-class SVM classifiers. The main
conceptual shortcoming of most one-class approaches, however, is that in
a strict sense they are unable to detect outliers, since the expected fraction
of outliers has to be specified in advance. The method presented in this
paper overcomes this problem by relating kernelized one-class classifica-
tion to Gaussian density estimation in the induced feature space. Having
established this relation, it is possible to identify “atypical objects” by
quantifying their deviations from the Gaussian model. For RBF kernels
it is shown that the Gaussian model is “rich enough” in the sense that it
asymptotically provides an unbiased estimator for the true density. In or-
der to overcome the inherent model selection problem, a cross-validated
likelihood criterion for selecting all free model parameters is applied.

1 Introduction

A one-class-classifier attempts to find a separating boundary between a data set and the
rest of the feature space. A natural application of such a classifier is estimating a contour
line of the underlying data density for a certain quantile value. Such contour lines may
be used to separate “typical” objects from “atypical” ones. Objects that look “sufficiently
atypical” are often considered to be outliers, for which one rejects the hypothesis that they
come from the same distribution as the majority of the objects. Thus, a useful application
scenario would be to find a boundary which separates the jointly distributed objects from
the outliers. Finding such a boundary defines a classification problem in which, however,
usually only sufficiently many labeled samples from one class are available. Usually no
labeled samples from the outlier class are available at all, and it is even unknown if there
are any outliers present.

It is interesting to notice that the approach of directly estimating a boundary, as opposed to
first estimating the whole density, follows one of the main ideas in learning theory which
states that one should avoid solving a too hard intermediate problem. While this line of rea-
soning seems to be appealing from a theoretical point of view, it leads to a severe problem
in practical applications: when it comes to detecting outliers, the restriction to estimating
only a boundary makes it impossible to derive a formal characterization of outliers with-
out prior assumptions on the expected fraction of outliers or even on their distribution. In
practice, however, any such prior assumptions can hardly be justified. The fundamental



problem of the one-class approach lies in the fact that outlier detection is a (partially) unsu-
pervised task which has been “squeezed” into a classification framework. The missing part
of information has been shifted to prior assumptions which can probably only be justified,
if the solution of the original problem was known in advance.

This paper aims at overcoming this problem by linking kernel-based one-class classifiers
to Gaussian density estimation in the induced feature space. Objects which have an “unex-
pected” high Mahalanobis distance to the sample mean are considered as “atypical objects”
or outliers. A particular Mahalanobis distance is considered to be unexpected, if it is very
unlikely to observe an object that far away from the mean vector in a random sample of
a certain size. We will formalize this concept in section 3 by way of fitting linear models
in quantile-quantile plots. The main technical ingredient of our method is the one-class
kernel Fisher discriminant classifier (OC-KFD), for which the relation to Gaussian density
estimation is shown. From the classification side, the OC-KFD-based model inherits the
simple complexity control mechanism by using regularization techniques. The explicit re-
lation to Gaussian density estimation, on the other hand, makes it possible to formalize the
notion of atypical objects by observing deviations from the Gaussian model. It is clear that
these deviations will heavily depend on the chosen model parameters. In order to derive
an objective characterization of atypical objects it is, thus, necessary to select a suitable
model in advance. This model-selection problem is overcome by using a likelihood-based
cross-validation framework for inferring the free parameters.

2 Gaussian density estimation and one-class LDA

Let X denote the n× d data matrix which contains the n input vectors xi ∈ R
d as rows. It

has been proposed to estimate a one-class decision boundary by separating the dataset from
the origin [12], which effectively coincides with replicating all xi with opposite sign and
separating X and −X . Typically, a ν-SVM classifier with RBF kernel function is used.
The parameter ν bounds the expected number of outliers and must be selected a priori. The
method proposed here follows the same idea of separating the data from their negatively
replicated counterparts. Instead of a SVM, however, a Kernel Fisher Discriminant (KFD)
classifier is used [7, 10]. The latter has the advantage that is is closely related to Gaussian
density estimation in the induced feature space. By making this relation explicit, outliers
can be identified without specifying the expected fraction of outliers in advance. We start
with a linear discriminant analysis (LDA) model, and then kernels will be introduced.

Let X ′ = (X,−X)> denote the augmented (2n × d) data matrix which also contains
the negative samples −xi. Without loss of generality we assume that the sample mean
µ+ ≡

∑

i xi > 0, so that the sample means of the positive data and the negative data
differ: µ+ 6= µ

−
. Let us now assume that our data are realizations of a normally distributed

random variable in d dimensions: X ∼ Nd(µ,Σ). Denoting by Xc the centered data
matrix, the estimator for Σ takes the form Σ̂ ≡ W = (1/n)Xc>Xc.

The LDA solution β
∗

maximizes the between-class scatter β>

∗
Bβ

∗
with B = µ+µ>

+ +

µ
−

µ>

−
under the constraint on the within-class scatter β>

∗
Wβ

∗
= 1. Note that in our

special case with X ′ = (X,−X)> the usual pooled within-class matrix W simply reduces
to the above defined W = (1/n)Xc>Xc. Denoting by y′ = (2, . . . , 2,−2, . . . ,−2)> a
2n-indicator vector for class membership in class “+” or “−”, it is well-known (see e.g. [1])
that the LDA solution (up to a scaling factor) can be found by minimizing a least-squares
functional: β̂ = arg minβ ‖y′−X ′β‖2. In [3] a slightly more general form of the problem
is described where the above functional is minimized under a constrained on β, which in
the simplest case amounts to adding a term γβ>β to the functional. Such a ridge regression
model assumes a penalized total covariance of the form T = (1/(2n)) · X ′>X ′ + γI =

(1/n) · X>X + γI . Defining an n-vector of ones y = (1, . . . , 1)>, the solution vector β̂



reads
β̂ = (X ′>X ′ + γI)−1X ′>y′ = (X>X + γI)−1X>y. (1)

According to [3], an appropriate scaling factor is defied in terms of the quantity s2 =

(1/n) · y>ŷ = (1/n) · y>Xβ̂, which leads us to the correctly scaled LDA vector β
∗

=

s−1(1 − s2)−1/2β̂ that fulfills the normalization condition β>

∗
Wβ

∗
= 1.

One further derives from [3] that the mean vector of X , projected onto the 1-dimensional
LDA-subspace has the coordinate value m+ = s(1 − s2)−1/2, and that the Mahalanobis
distance from a vector x to the sample mean µ+ is the sum of the squared Euclidean
distance in the projected space and an orthogonal distance term:

D(x,µ+) = (β>

∗
x − m+)2 + D⊥ with D⊥ = −(1 − s2)(β>

∗
x)2 + x>T−1x. (2)

Note that it is the term D⊥ which makes the density estimation model essentially different
from OC-classification: while the latter considers only distances in the direction of the
projection vector β, the true density model additionally takes into account the distances in
the orthogonal subspace.

Since the assumption X ∼ Nd(µ,Σ) is very restrictive, we propose to relax it by assuming
that we have found a suitable transformation of our input data φ : R

d 7→ R
p, x 7→ φ(x),

such that the transformed data are Gaussian in p dimensions. If the transformation is carried
out implicitly by introducing a Mercer kernel k(xi,xj), we arrive at an equivalent problem
in terms of the kernel matrix K = ΦΦ> and the expansion coefficients α:

α̂ = (K + γI)−1y. (3)

From [11] it follows that the mapped vectors can be represented in R
n as φ(x) =

K−1/2k(x), where k(x) denotes the kernel vector k(x) = (k(x,x1), . . . , k(x,xn))>.
Finally we derive the following form of the Mahalanobis distances which again consist of
the Euclidean distance in the classification subspace plus an orthogonal term:

D(x,µ+) = (α>

∗
k(x) − m+)2 − (1 − s2)(α>

∗
k(x))2 + nΩ(x), (4)

where Ω(x) = φ>(x)(Φ>Φ + γI)−1φ(x) = k>(x)(K + γI)−1K−1k(x),
m+ = s(1− s2)−1/2, s2 = (1/n) · y>ŷ = (1/n) · y>Kα̂, and α∗ = s−1(1− s2)−1/2α̂.

Equation (4) establishes the desired link between OC-KFD and Gaussian density estima-
tion, since for our outlier detection mechanism only Mahalanobis distances are needed.
While it seems to be rather complicated to estimate a density by the above procedure, the
main benefit over directly estimating the mean and the covariance lies in the inherent com-
plexity regulation properties of ridge regression. Such a complexity control mechanism is
of particular importance in highly nonlinear kernel models. Moreover, for ridge-regression
models it is possible to analytically calculate the effective degrees of freedom, a quantity
that will be of particular interest when it comes to detecting outliers.

3 Detecting outliers

Let us assume that the model is completely specified, i.e. both the kernel function k(·, ·)
and the regularization parameter γ are fixed. The central lemma that helps us to detect
outliers can be found in most statistical textbooks:

Lemma 1. Let X be a Gaussian random variable X ∼ Nd(µ,Σ). Then ∆ ≡ (X −
µ)>Σ−1(X − µ) follows a chi-square (χ2) distribution on d degrees of freedom.

For the penalized regression models, it might be more appropriate to use the effective de-
grees of freedom df instead of d in the above lemma. In the case of one-class LDA with
ridge penalties we can easily estimate it as df = trace(X(X>X + γI)−1X>), [8], which



for a kernel model translates into df = trace(K(K + γI)−1). The intuitive interpretation
of the quantity df is the following: denoting by V the matrix of eigenvectors of K and by
{λi}

n
i=1 the corresponding eigenvalues, the fitted values ŷ read

ŷ = V diag {δi = λi/(λi + γ)}V >y. (5)

It follows that compared to the unpenalized case, where all eigenvectors vi are constantly
weighted by 1, the contribution of the i-th eigenvector vi is down-weighted by a factor
δi/1 = δi. If the ordered eigenvalues decrease rapidly, however, the values δi are either
close to zero or close to one, and df determines the number of terms that are “essentially
different” from zero. The same is true for the orthogonal distance term in eq. (4): note that

Ω(x) = k>(x)(K +γI)−1K−1k(x) = k>V diag
{

δ′i = ((λi + γ)λi)
−1

}

V >k(x). (6)

Compared to the unpenalized case (the contribution of vi is weighted by λ−2
i ), the contri-

bution of vi is down-weighted by the same factor δ′

i/λ−2
i

= δi.

From lemma 1 we conclude that if the data are well described by a Gaussian model in
the kernel feature space, the observed Mahalanobis distances should look like a sample
from a χ2-distribution with df degrees of freedom. A graphical way to test this hypothesis
is to plot the observed quantiles against the theoretical χ2 quantiles, which in the ideal
case gives a straight line. Such a quantile-quantile plot is constructed as follows: Let
∆(i) denote the observed Mahalanobis distances ordered from lowest to highest, and pi the
cumulative proportion before each ∆(i) given by pi = (i − 1/2)/n. Let further zi = F−1pi

denote the theoretical quantile at position pi, where F is the cumulative χ2-distribution
function. The quantile-quantile plot is then obtained by plotting ∆(i) against zi. Deviations
from linearity can be formalized by fitting a linear model on the observed quantiles and
calculating confidence intervals around the fit. Observations falling outside the confidence
interval are then treated as outliers. A potential problem of this approach is that the outliers
themselves heavily influence the quantile-quantile fit. In order to overcome this problem,
the use of robust fitting procedures has been proposed in the literature, see e.g. [4]. In
the experiments below we use an M-estimator with Huber loss function. For estimating
confidence intervals around the fit we use the standard formula (see [2, 5])

σ(∆(i)) = b · (χ2(zi))
−1

√

(pi(1 − pi))/n, (7)

which can be intuitively understood as the product of the slope b and the standard error of
the quantiles. A 100(1− ε)% envelope around the fit is then defined as ∆(i) ± zε/2σ(∆(i))
where zε/2 is the 1− (1− ε)/2 quantile of the standard normal distribution.

The choice of the confidence level ε is somewhat arbitrary, and from a conceptual viewpoint
one might even argue that the problem of specifying one free parameter (i.e. the expected
fraction of outliers) has simply been transferred into the problem of specifying another
one. In practice, however, selecting ε is a much more intuitive procedure than guessing the
fraction of outliers. Whereas the latter requires problem-specific prior knowledge which is
hardly available in practice, the former depends only on the variance of a linear model fit.
Thus, ε can be specified in a problem independent way.

4 Model selection

In our model the data are first mapped into some feature space, in which then a Gaussian
model is fitted. Mahalanobis distances to the mean of this Gaussian are computed by
evaluating (4). The feature space mapping is implicitly defined by the kernel function, for
which we assume that it is parametrized by a kernel parameter σ. For selecting all free
parameters in (4), we are, thus, left with the problem of selecting θ = (σ, γ)>.

The idea is now to select θ by maximizing the cross-validated likelihood. From a theoret-
ical viewpoint, the cross-validated (CV) likelihood framework is appealing, since in [13]



the CV likelihood selector has been shown to asymptotically perform as well as the opti-
mal benchmark selector which characterizes the best possible model (in terms of Kullback-
Leibler divergence to the true distribution) contained in the parametric family.

For kernels that map into a space with dimension p > n, however, two problems arise: (i)
the subspace spanned by the mapped samples varies with different sample sizes; (ii) not
the whole feature space is accessible for vectors in the input space. As a consequence, it
is difficult to find a “proper” normalization of the Gaussian density in the induced feature
space. We propose to avoid this problem by considering the likelihood in the input space
rather than in the feature space, i.e. we are looking for a properly normalized density model
p(x|·) in R

d such that p(x|·) has the same contour lines as the Gaussian model in the feature
space: p(xi|·) = p(xi|·) ⇔ p(φ(xi)|·) = p(φ(xj)|·). Denoting by Xn = {xi}

n
i=1 a

sample from p(x) from which the kernel matrix K is built, a natural input space model is

pn(x|Xn,θ) = Z−1 exp{− 1
2D(x; Xn,θ)}, with Z =

∫

Rd pn(x|Xn,θ) dx, (8)

where D(x; Xn,θ) denotes the (parametrized) Mahalanobis distances (4) of a Gaussian
model in the feature space. Note that this density model in the input space has the same
form as our Gaussian model in the feature space, except for the different normalization
constant Z. Computing this constant Z requires us to solve a normalization integral over the
whole d-dimensional input space. Since in general this integral is not analytically tractable
for nonlinear kernel models, we propose to approximate Z by a Monte Carlo sampling
method. In our experiments, for instance, the VEGAS algorithm [6], which implements a
mixed importance-stratified sampling approach, showed to be a reasonable method for up
to 10 input dimensions.

By using the CV likelihood framework we are guaranteed to (asymptotically) perform as
well as the best model in the parametrized family. Thus, the question arises whether the
family of densities defined by a Gaussian model in a kernel-induced feature space is “rich
enough” such that no systematic errors occur. For RBF kernels, the following lemma pro-
vides a positive answer to this question.
Lemma 2. Let k(xi,xj) = exp(−‖xi − xj‖

2/σ). As σ → 0 , pn(x|Xn,θ) converges to
a Parzen window with vanishing kernel width: pn(x|Xn,θ) → 1

n

∑n
i=1 δ(x − xi).

A formal proof is omitted due to space limitations. The basic ingredients of the proof
are: (i) In the limit σ → 0 the expansion coefficients approach α̂ → 1/(1 + γ)1. Thus,
ŷ = Kα̂ → 1/(1 + γ)1 and s2 → 1/(1 + γ). (ii) D(x;σ, γ) → C(x) < ∞, if x ∈
{xi}

n
i=1, and D(x;σ, γ) → ∞, else. Finally pn(x|Xn, σ, γ) → 1

n

∑n
i=1 δ(x − xi).

Note that in the limit σ → 0 a Parzen window becomes an unbiased estimator for any
continuous density, which provides an asymptotic justification for our approach: the cross-
validated likelihood framework guarantees us to convergence to a model that performs as
well as the best model in our model class as n → ∞. The latter, however, is “rich enough”
in the sense that it contains models which in the limit σ → 0 converge to an unbiased
estimator for every continuous p(x). Since contour lines of pn(x) are contour lines of a
Gaussian model in the feature space, the Mahalanobis distances are expected to follow a
χ2 distribution, and atypical objects can be detected by observing the distribution of the
empirical Mahalanobis distances as described in the last section.

It remains to show that describing the data as a Gaussian in a kernel-induced feature space
is a statistically sound model. This is actually the case, since there exist decay rates for the
kernel width σ such that n grows at a higher rate as the effective degrees of freedom df :
Lemma 3. Let k(xi,xj) = exp(−‖xi − xj‖

2/σ) and pn(x|Xn, σ, γ) defined by (8). If
σ ≤ 1 decays like O(n−1/2), and for fixed γ ≤ 1, the ratio df/n → 0 as n → ∞.

A formal proof is omitted due to space limitations. The basic ingredients of the proof are:
(i) the eigenvalues λ′

i of (1/n)K converge to λ̄i as n → ∞, (ii) the eigenvalue spectrum of



a Gaussian RBF kernel decays at an exponential-quadratic rate: λ̄i ∝ exp(−σi2), (iii) for
n sufficiently large, it holds that

∑n
i=1 1/[1+(γ/n) exp(n−1/2σi2)] ≤ n1/2σ−1 log(n/γ)

(proof by induction, using the fact that ln(n + 1) − ln(n) ≥ 1/(n2 + n) which follows
from a Taylor expansion of the logarithm) ⇒ df(n)/n → 0.

5 Experiments

The performance of the proposed method is demonstrated for an outlier detec-
tion task in the field of face recognition. The Olivetti face database (see
http://www.uk.research.att.com/facedatabase.html) contains ten different images of each of
40 distinct subjects, taken under different lighting conditions and at different facial ex-
pressions and facial details (glasses / no glasses). None of the subjects, however, wears
sunglasses. All the images are taken against a homogeneous background with the subjects
in an upright, frontal position. In this experiment we additionally corrupted the dataset by
including two images in which we have artificially changed normal glasses to “sunglasses”
as can be seen in figure 1. The goal is to demonstrate that the proposed method is able to
identify these two atypical images without any problem-dependent prior assumptions.

Figure 1: Original and corrupted images with in-painted “sunglasses”.

Each of the 402 images is characterized by a 10-dimensional vector which contains the
projections onto the leading 10 eigenfaces (eigenfaces are simply the eigenvectors of the
images treated as pixel-wise vectorial objects). These vectors are feed into a RBF kernel
of the form k(xi,xj) = exp(−‖xi − xj‖

2/σ). In a first step, the free model parameters
(σ, γ) are selected by maximizing the cross-validated likelihood. A simple 2-fold cross
validation scheme is used: the dataset is randomly split into a training set and a test set of
equal size, the model is build from the training set (including the numerical solution of the
normalization integral), and finally the likelihood is evaluated on the test set. This proce-
dure is repeated for different values of (σ, γ). In order to simplify the selection process
we kept γ = 10−4 fixed and varied only σ. Both the test likelihood and the corresponding
model complexity measured in terms of the effective degrees of freedom (df ) are plotted
in figure 2. One can clearly identify both an overfitting and an underfitting regime, sepa-
rated by a broad plateau of models with similarly high likelihood. The df -curve, however,
shows a similar plateau, indicating that all these models have comparable complexity. This
observation suggests that the results should be rather insensitive to variations of σ over val-
ues contained in this plateau. This suggestion is indeed confirmed by the results in figure
2, where we compared the quantile-quantile plot for the maximum likelihood parameter
value with that of a slightly suboptimal model. Both quantile plots look very similar, and
in both cases two objects clearly fall outside a 99% envelope around the linear fit. Out-
side the plateau (no figure due to space limitations) the number of objects considered as
outlies drastically increases in overfitting regime (σ too small), or decreases to zero in the
underfitting regime (σ too large).

In figure 3 again the quantile plot for the most likely model is depicted. This time, however,
both objects identified as outliers are related to the corresponding original images, which
in fact are the artificially corrupted ones. In addition, the uncorrupted images are localized
in the plot, indicating that they look rather typical.

Some implementation details. Presumably the easiest way of implementing the model is
to carry out an eigenvalue decomposition of K. Both the the effective degrees of freedom
df =

∑

i λi/(λi + γ) and the Mahalanobis distances in eq. (4) can then by derived easily
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Figure 2: Middle panel: Selecting the kernel width σ by cross-validated likelihood (solid
line). The dotted line shows the corresponding effective degrees of freedom (df). Left +
right panels: quantile plot for optimal model (left) and slightly suboptimal model (right).
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Figure 3: Quantile plot with linear fit (solid) and envelopes (99% and 99.99 %, dashed).

from this decomposition (see (5) and (6)). Efficient on-line variants can be implemented by
using standard update formulas for matrix inversion by partitioning. For an implementation
of the VEGAS algorithm see [9]. The R package “car” provides a comfortable implemen-
tation of quantile-quantile plots and robust line fitting (see also http://www.R-project.org).

6 Conclusion

Detecting outliers by way of one-class classifiers aims at finding a boundary that separates
“typical” objects in a data sample from the “atypical” ones. Standard approaches of this
kind suffer from the problem that they require prior knowledge about the expected fraction
of outliers. For the purpose of outlier detection, however, the availability of such prior
information seems to be an unrealistic (or even contradictory) assumption. The method
proposed in this paper overcomes this shortcoming by using a one-class KFD classifier
which is directly related to Gaussian density estimation in the induced feature space. The
model benefits from both the built-in classification method and the explicit parametric den-
sity model: from the former it inherits the simple complexity regulation mechanism based
on only two tuning parameters. Moreover, within the classification framework it is possi-
ble to quantify the model complexity in terms of the effective degrees of freedom df . The
Gaussian density model, on the other hand, makes it possible to derive a formal descrip-
tion of atypical objects by way of hypothesis testing: Mahalanobis distances are expected
to follow a χ2-distribution in df dimensions, and deviations from this distribution can be



quantified by confidence intervals around a fitted line in a quantile-quantile plot. Since
the density model is parametrized by both the kernel function and the regularization con-
stant, it is necessary to select these free parameters before the outlier detection phase. This
parameter selection is achieved by observing the cross-validated likelihood for different
parameter values, and choosing those parameters which maximize this quantity. The the-
oretical motivation for this selection process follows from [13] where it has been shown
that the cross-validation selector asymptotically performs as well as the so called bench-
mark selector which selects the best model contained in the parametrized family of models.
Moreover, for RBF kernels it is shown in lemma 2 that the corresponding model family is
“rich enough” in the sense that it contains an unbiased estimator for the true density (as
long as it is continuous) in the limit of vanishing kernel width. Lemma 3 shows that there
exist decay rates for the kernel width such that the ratio of effective degrees of freedom and
sample size approaches zero.

The experiment on detecting persons wearing sunglasses within a collection of rather het-
erogeneous face images effectively demonstrates that the proposed method is able to detect
atypical objects without prior assumptions on the expected number of outliers. In partic-
ular, it demonstrates that the whole processing pipeline consisting of model selection by
cross-validated likelihood, fitting linear quantile-quantile models and detecting outliers by
considering confidence intervals around the fit works very well in practical applications
with reasonably small input dimensions. For input dimensions � 10 the numerical solu-
tion of the normalization integral becomes rather time consuming when using the VEGAS
algorithm. Evaluating the usefulness of more sophisticated sampling models like Markov-
Chain Monte-Carlo methods for this particular task will be subject of future work.
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