A Second order Cone Programming
Formulation for Classifying Missing Data

Chiranjib Bhattacharyya
Department of Computer Science and Automation
Indian Institute of Science
Bangalore, 560 012, India
chiru@sa.iisc.ernet.in

Pannagadatta K. S. Alexander J. Smola
Department of Electrical Engineering Machine Learning Program
Indian Institute of Science National ICT Australia and ANU
Bangalore, 560 012, India Canberra, ACT 0200, Australia
pannaga@e.iisc.ernet.in Al ex. Snol a@nu. edu. au
Abstract

We propose a convex optimization based strategy to deal with uncertainty
in the observations of a classification problem. We assume that instead
of a sample (x;,y;) a distribution over (x;,y;) is specified. In particu-
lar, we derive a robust formulation when the distribution is given by a
normal distribution. It leads to Second Order Cone Programming formu-
lation. Our method is applied to the problem of missing data, where it
outperforms direct imputation.

1 Introduction

Denote by (x,y) € X' x) patterns with corresponding labels. The typical machine learning
formulation only deals with the case where (x, y) are given exactly. Quite often, however,
this is not the case — for instance in the case of missing values we may be able (using a
secondary estimation procedure) to estimate the values of the missing variables, albeit with
a certain degree of uncertainty. It is therefore only natural to take the decreased reliability of
such data into account and design estimators accordingly. What we propose in the present
paper goes beyond the traditional imputation strategy where missing values are estimated
and then used as if they had actually been observed. The key difference in what follows is
that we will require that with high probability any (x;,y;) pair, where %; is drawn from a
distribution of possible x;, will be estimated correctly. For the sake of simplicity we limit
ourselves to the case of binary classification.

The paper is organized as follows: Section 2 introduces the problem of classification with
uncertain data. We solve the equations arising in the context of normal random variables
in Section 3 which leads to a Second Order Cone Program (SOCP). As an application
the problem of classification with missing variables is described in Section 4. We report
experimental results in Section 5.

2 Linear Classification using Convex Optimization

Assume we have m observations (x;,y;) drawn iid (independently and identically dis-
tributed) from a distribution over X’ x), where X is the set of patternsand) = {41} are
the labels (e.g. the absence/presence of a particular object). It is our goal to find a function
f : X — Y which classifies observations x into classes +1 and —1.

2.1 Classification with Certainty

Assume that X is a dot product space and f is a linear function
f(x) = sgn((w, x) +b). 1)

In the case of linearly separable datasets we can find (w, b) which separates the two classes.
Unfortunately, such separation is not always possible and we need to allow for slack in the
separation of the two sets. Consider the formulation

m
minimize ; 2a
nimi ;g (22)

subjectto y; ((w,x;) +b) > 1—¢,& >0, ||lw|| < Wforall1<i<m (2b)

It is well known that this problem minimizes an upper bound on the number of errors. The
latter occur whenever &; > 1, where &; are the slack variables. The Euclidean norm of
lw| = +/{w,w), is upper bounded by a user defined constant /. This is equivalent
to lower bounding the margin, or the separation between the two classes. The resulting
discriminant surface is called the generalized optimal hyperplane[9]. The statement of (2)
is slightly nonstandard. Typically one states the SVM optimization problem as follows [3]:

T SR -
minimize - w] +C;& (3a)
subjecttoy; ((w,x;) +b) >1—-¢&,& >0forall1 <i<m (3b)

Instead of the user defined parameter W, the formulation (3) uses another parameter C.
For a proper choice of C' and W the two formulations are equivalent. For the purpose of
the present paper, however, (2) will be much more easily amenable to modifications and to
cast the resulting problem as a second order cone program (SOCP).

2.2 Classification with Uncertainty

So far we assumed that the (x;, y;) pairs are known with certainty. We now relax this to the
assumption that we only have a distribution over the x;, that is (P, y;) at our disposition
(due to a sampling procedure, missing variables, etc.). Formally x; ~ P;. In this case it
makes sense to replace the constraints (2b) of the optimization problem (2) by

subjectto Pr{y; ((w,x;) +0) > 1 =&} > K,& >0, ||w|]| <WV1I<i<m (4)

Here we replaced the linear classification constraint by a probabilistic one, which is re-
quired to hold with probability x; € (0, 1]. This means that by choosing a value of «; close
to 1 we can find a conservative classifier which will classify even very infrequent (x;, ;)
pairs correctly. Hence &; provides robustness of the estimate with respect to deviating x;.

It is clear that unless we impose further restrictions on P;, it will be difficult to minimize the
objective Y. | & with the constraints (4) efficiently. In the following we will consider the
special cases of gaussian uncertainty for which a mathematical programming formulation
can be found.

3 Normal Distributions

For the purpose of this section we assume that P; = N (z;,3;), i.e., x; is drawn from a
Gaussian distribution with mean z,; and covariance X;. We will not require that X, has full
rank. This means that the uncertainty about x; may be limited to individual coordinates or
to a subspace of X'. As we shall see, this problem can be posed as SOCP.

3.1 Robust Classification

Under the above assumptions, the probabilistic constraint (4) becomes
subject to Pr{y; ((w,x;) +b) > 1 —&} > ; where x; ~ N (Z;,%;) (5a)

&>0wl <Wforalll <i<m (5b)
The stochastic constraint can be restated as a deterministic optimization problem
Pr{zi_zi>yib+£i_1_zi} < w (©)
O'zi O-Zi
where z; := —y;w ' x; is a normal random variable with mean z; and variance afi =

w ' X;w. Consequently (z;—z;) /o, is a random variable with zero mean and unit variance
and we can compute the lhs of (6) by evaluating the cumulative distribution function for

normal distributions i .
o 2
U) = —— e 7 ds.
o) === [

In summary, (6) is equivalent to the condition

¢<yz‘b+fi—1—7i) > k.

02,

i

which can be solved (since ¢(u) is monotonic and invertible), for the argument of ¢ and
obtain a condition on its argument

YWz +0) > 1 =&+ uvVwIiSiw, v = ¢ (k) (7
We now proceed to deriving a mathematical programming formulation.

3.2 Second Order Cone Programming Formulation

Depending on ~y; we can distinguish between three different cases. First consider the case
where ~; = 0 or k; = 0.5. This means that the second order cone part of the constraint (7)
reduces to the linear inequality of (2b). In other words, we recover the linear constraint of
a standard SVM.

Secondly consider the case ; < 0 or x; < 0.5. This means that the constraint (7) describes
a concave set, which turns the linear classification task into a hard optimization problem.
However, it is not very likely that anyone would like to impose such constraints which hold
only with low probability. After all, uncertain data requires the constraint to become more
restrictive in holding not only for a guaranteed point x; but rather for an entire set.

Lastly consider the case v; > 0 or x; > 0.5 second order cone constraint. In this case (7)
describes a convex set in in w, b, &;. We obtain the following optimization problem:

minimize i 8a
nimi ;5 (83)

subject to y; (w'x; +b) > 1—¢; +%||Z§w|| and§; >0vV1<i<m (8b)
[wll <W (8¢)

These problems can be solved efficiently by publicly available codes: recent advances in
Interior point methods for convex nonlinear optimization [8] have made such problems
feasible. As a special case of convex nonlinear optimization SOCPs have gained much
attention in recent times. For a further discussion of efficient algorithms and applications
of SOCP see [6].

3.3 Worst Case Prediction

Note that if at optimality & > 0, the hyperplane intersects with the constraint set
B(x;,>;,v:). Moreover, at a later stage we will need to predict the class label to asses
on which side of the hyperplane B lies. If the hyperplane intersects B we will end up with
different predictions for points in the different half spaces. In such a scenario a worst case
prediction, y can be

y = sgn(=) sgn(h — 7) where 5 = 6~ (x), = = % andh=1d. ()

Here sgn(z) gives us the sign of the point in the center of the ellipsoid and (h — «) is
the distance of z from the center. If the hyperplane intersects the ellipsoid, the worst case
prediction is then the prediction for all points which are in the opposite half space of the
center (x;). Plugging x = 0.5, i.e., v = 0 into (9) yields the standard prediction (1).
In such a case & can serve as a measure of confidence as to how well the discriminating
hyperplane classifies the mean(x;) correctly.

3.4 Set Constraints

The same problem as (8) can also be obtained by considering that the uncertainty in each
datapoint is characterized by an ellipsoid

B(x;, $i,7:) = {x: (x —x;) 57 (x —x;) <77} (10)
in conjunction with the constraint
yi ((w,x) +b) >1-¢ forallx € S; (11)

where S; = B(x;,Y;,v:) As before v; = ¢~ 1(k;) for x; > 0. In other words, we have
&; = 0 only when the hyperplane w " x + b = 0 does not intersect the ball B(x;, ¥;, ;).

Note that this puts our optimization setting into the same category as the knowledge-based
SVM, and SDP for invariances as all three deal with the above type of constraint (11).
More to the point, in [5] S; = S(x;,3) is a polynomial in 8 which describes the set
of invariance transforms of x; (such as distortion or translation). [4] define S; to be a
polyhedral “knowledge” set, specified by the intersection of linear constraints.

Such considerations suggest yet another optimization setting: instead of specifying a poly-
hedral set .S; by constraints we can also specify it by its vertices. In particular, we may set
S; to be the convex hull of a set as in S; = co{x;; for 1 < j < m;}. By the convexity of
the constraint set itself it follows that a necessary and sufficient condition for (11) to hold
is that the inequality holds for all x € {x;; for 1 < j < m;}. Consequently we can replace
(11) by y; ({(w,x45) +b) > 1 — &; Note that the index ranges over j rather than 4. Such a
setting allows us to deal with uncertainties, e.g. regarding the range of variables, which are
just given by interval boundaries, etc. The table below summarizes the five cases:

Name | SetS; | Optimization Problem

Plain SVM[3] {x:} Quadratic Program
Knowledge Based SVM[4] | Polyhedral set Quadratic Program
Invariances [5] trajectory of polynomial | Semidefinite Program
Normal Distribution B(x;, %4, 7:) Second Order Cone Program

Convex Hull co{x;; V1 <j<m} Quadratic Program

Clearly all the above constraints can be mixed and matched and it is likely that there will be
more additions to this table in the future. More central is the notion of stating the problems
via (11) as a starting point.

4 Missing Variables

In this section we discuss how to address the missing value problem. Key is how to obtain
estimates of the uncertainty in the missing variables. Since our optimization setting allows
for uncertainty in terms of a normal distribution we attempt to estimate the latter directly.
In other words, we assume that x|y is jointly normal with mean ¥ and covariance Y.
Hence we have the following two-stage procedure to deal with missing variables:

o Estimate .Y, u¥ from incomplete data, e.g. by means of the EM algorithm.

e Use the conditionally normal estimates of 2 missing |(Zobserved,) I the optimiza-
tion problem. This can then be cast in terms of a SOCP as described in the previous
section.

Note that there is nothing to prevent us from using other estimates of uncertainty and use
e.g. the polyhedral constraints subsequently. However, for the sake of simplicity we focus
on normal distributions in this paper.

4.1 Estimation of the model parameters

We now detail the computation of the mean and covariance matrices for the datapoints
which have missing values. We just sketch the results, for a detailed derivation see e.g. [7].

Let x € R%, where x, € R% be the vector whose values are known, while x,,, € R~ %
be the vector consisting of missing variables. Assuming a jointly normal distribution in x
with mean p and covariance ¥ it follows that

Xm|Xa ~ N (tm + SamEan (Ta — Ha)s Smm — SamSaa Sam)- (12)
Here we decomposed i, ¥ according to (x4, z,,) into

Eaa Eam
p = (fa; i) and ¥ = |: E;rm O :| .

(13)
Hence, knowing X, 1 we can estimate the missing variables and determine their degree of
uncertainty. One can show that [7] to obtain X, i the EM algorithm reads as follows:

1. Initialize X2, p.
2. Estimate x,,,|x, for all observations using (12).
3. Recompute X2, p using the completed data set and go to step 2.

4.2 Robust formulation for missing values

As stated above, we model the missing variables as Gaussian random variables, with its
mean and covariance given by the model described in the previous section. The standard
practice for imputation is to discard the covariance and treat the problem as a deterministic
problem, using the mean as surrogate. But using the robust formulation (8) one can as well
account for the covariance.

Let m, be number of datapoints for which all the values are available, while m,,, be the
number of datapoints containing missing values. Then the final optimization problem reads

as follows:

m
minimize ;@- (14)
SUbjeCt to Yi (<W7Xi> + b) > 1- gz V1 < { <myg
YWy +0) 21— &+ 67 (5 [SF W] Ving +1 < j < mg+my,
§& =0 V1 <i<mg+mm
|w] <W

The mean x; has two components; x,; has values available, while the imputed vector is
given by %X,,;, via (12). The matrix 3; has all entries zero except those involving the
missing values, given by C;, computed via (12).

The formulation (14) is an optimization problem which involves minimizing a linear ob-
jective over linear and second order cone constraints. At optimality the values of w, b,
can be used to define a classifier (1). The resulting discriminator can be used to predict
the the class label of a test datapoint having missing variables by a process of conditional
imputation as follows.

Perform the imputation process assuming that the datapoint comes from class 1(class with
label y = 1). Specifically compute the mean and covariance, as outlined in section 4.1,
and denote them by i, and X (see (13)) respectively. The training dataset of class 1 is to
be used in the computation of p; and ;. Using the estimated pq and 3; compute h as
defined in (9), and denote it by h;. Compute the label of 1; with the rule (1), call it y;.

Assuming that the test data comes from class 2 (with label y = —1) redo the entire process
and denote the resulting mean, covariance, and & by o, 3o, ho respectively. Denote by y-
the label of u» as predicted by (1). We decide that the observation belongs to class with
label y,, as

Y = Y2 if by < hy and y,, = y; otherwise (15)

The above rule chooses the prediction with higher / value or in other words the classifier
chooses the prediction about which it is more confident. Using y,,, h1, ko as in (15), the
worst case prediction rule (9) can be modified as follows

y =y, sgn(h —) where v = ¢~ '(k) and h = max(hy, hs) (16)

It is our hypothesis that the formulation (14) along with this decision rule is robust to
uncertainty in the data.

5 Experiments with the Robust formulation for missing values

Experiments were conducted to evaluate the proposed formulation (14), against the stan-
dard imputation strategy. The experiment methodology consisted of creating a dataset of
missing values from a completely specified dataset. The robust formulation (14) was used
to learn a classifier on the dataset having missing values. The resulting classifier was used
to give a worst case prediction (16), on the test data. Average number of disagreements was
taken as the error measure. In the following we describe the methodology in more detail.

Consider a fully specified dataset, D = {(x;,y:)|x; € R%, y; € {£1}1 <i < N} having
N observations, each observation is a d dimensional vector (x;) and labels ;. A certain
fraction(f) of the observations were randomly chosen. For each of the chosen datapoints
d, (= 0.5d) entries were randomly deleted. This then creates a dataset having IV datapoints
out of which N,,,(= fN, 0 < f < 1) of them have missing values. This data is then

randomly partitioned into test set and training set in the ratio 1 : 9 respectively. We do this
exercise to generate 10 different datasets and all our results are averaged over them.

Assuming that the conditional probability distribution of the missing variables given the
other variables is a gaussian, the mean(x;) and the covariance (C;) can be estimated by the
methods described in (4.1). The robust optimization problem was then solved for different
values of k. The parameter ;(= «) is set to the same value for all the V,,, datapoints. For

each value of « the worst case error is recorded.

Experimental results are reported for three public domain datasets downloaded from uci
repository ([2]). Pima(N = 768, d = 8), Heart (N = 270, d = 13), and lonosphere(N =
351, d = 34), were used for experiments.

Setting x = 0.5, yields the generalized optimal hyperplane formulation, (2). The general-
ized optimal hyperplane will be referred to as the nominal classifier. The nominal classifier
considers the missing values are well approximated by the mean (x;), and there is no un-
certainty.

T
& robust
=% nomic
- robustie

5

039)

038

035

037]

03|

03|

Figure 1: Performance of the robust programming solution for various datasets of the UCI
database. From left to right: Pima, lonosphere, and Heart dataset. Top: small fraction
of data with missing variables (50%), Bottom: large number of observations with missing
variables (90%)

The experimental results are summarized by the graphs(1). The robust classifier almost
always outperforms the nominal classifier in the worst case sense (compare nomwc and
robustwc). Results are presented for low(f = 0.5), and high (f = 0.9) number of missing
values. The results show that for low number of missing values(f = 0.5) the robust classi-
fier is marginally better than the nominal classifier the gain but for large f = 0.9 the gain

is significant. This confirms that the imputation strategy fails for high noise.

The standard misclassification error for the robust classifier, using the standard prediction
(1), is also shown in the graph with the legend robust. As expected the robust classifier
performance does not deteriorate in the standard misclassification sense as « is increased.

In summary the results seems to suggest that for low noise level the nominal classifier
trained on imputed data performs as good as the robust formulation. But for high noise
level the robust formulation yields dividends in the worst case sense.

6 Conclusions

An SOCP formulation was proposed for classifying noisy observations and the resulting
formulation was applied to the missing data case. In the worst case sense the classifier
shows a better performance over the standard imputation strategy. Closely related to this
work is the Total Support Vector Classification(TSVC) formulation, presented in [1]. The
TSVC formulation tries to reconstruct the original maximal margin classifier in the pres-
ence of noisy data. Both TSVC formulation and the approach in this paper address the issue
of uncertainty in input data and it would be an important research direction to compare the
two approaches.

Acknowledgements CB was partly funded by ISRO-11Sc Space technology cell (Grant
number IST/ECA/CB/152). National ICT Australia is funded through the Australian Gov-
ernment’s Backing Australia’s Ability initiative, in part through the Australian Research
Council. AS was supported by grants of the ARC. We thank Laurent EIGhaoui, Michael
Jordan, Gunnar Rétsch, and Frederik Schaffalitzky for helpful discussions and comments.

References

[1] J. Bi and T. Zhang. Support vector classification with input data uncertainty. In Ad-
vances in Neural Information Processing Systems. MIT Press, 2004.

[2] C. L. Blake and C. J. Merz. UCI repository of machine learning databases, 1998.

[3] C. Cortes and V. Vapnik. Support vector networks. Machine Learning, 20:273-297,
1995.

[4] G. Fung, O. L. Mangasarian, and Jude Shavlik. Knowledge-based support vector ma-
chine classifiers. In Advancesin Neural Information Processing Systems. MIT Press,
2002.

[5] Thore Graepel and Ralf Herbrich. Invariant pattern recognition by semidefinite pro-
gramming machines. In Advancesin Neural Information Processing Systems 16, Cam-
bridge, MA, 2003. MIT Press.

[6] M.S. Lobo, L. Vandenberghe, S. Boyd, and H. Lebret. Applications of second-order
cone programming. Linear Algebra and its Applications, 284(1-3):193-228, 1998.

[7] K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate Analysis. Academic Press,
1979.

[8] Y. Nesterov and A. Nemirovskii. Interior Point Algorithms in Convex Programming.
Number 13 in Studies in Applied Mathematics. SIAM, Philadelphia, 1993.

[9] V. Vapnik. The Nature of Satistical Learning Theory. Springer, New York, 1995.

