Clustering with the Connectivity Kernel

Part of Advances in Neural Information Processing Systems 16 (NIPS 2003)

Bibtex Metadata Paper


Bernd Fischer, Volker Roth, Joachim Buhmann


Clustering aims at extracting hidden structure in dataset. While the prob- lem of finding compact clusters has been widely studied in the litera- ture, extracting arbitrarily formed elongated structures is considered a much harder problem. In this paper we present a novel clustering algo- rithm which tackles the problem by a two step procedure: first the data are transformed in such a way that elongated structures become compact ones. In a second step, these new objects are clustered by optimizing a compactness-based criterion. The advantages of the method over related approaches are threefold: (i) robustness properties of compactness-based criteria naturally transfer to the problem of extracting elongated struc- tures, leading to a model which is highly robust against outlier objects; (ii) the transformed distances induce a Mercer kernel which allows us to formulate a polynomial approximation scheme to the generally NP- hard clustering problem; (iii) the new method does not contain free kernel parameters in contrast to methods like spectral clustering or mean-shift clustering.