Gaussian Process Latent Variable Models for Visualisation of High Dimensional Data

Part of Advances in Neural Information Processing Systems 16 (NIPS 2003)

Bibtex Metadata Paper


Neil Lawrence


In this paper we introduce a new underlying probabilistic model for prin- cipal component analysis (PCA). Our formulation interprets PCA as a particular Gaussian process prior on a mapping from a latent space to the observed data-space. We show that if the prior’s covariance func- tion constrains the mappings to be linear the model is equivalent to PCA, we then extend the model by considering less restrictive covariance func- tions which allow non-linear mappings. This more general Gaussian pro- cess latent variable model (GPLVM) is then evaluated as an approach to the visualisation of high dimensional data for three different data-sets. Additionally our non-linear algorithm can be further kernelised leading to ‘twin kernel PCA’ in which a mapping between feature spaces occurs.