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Abstract

We present a modified version of the perceptron learning algorithm
(PLA) which solves semidefinite programs (SDPs) in polynomial
time. The algorithm is based on the following three observations:
(i) Semidefinite programs are linear programs with infinitely many
(linear) constraints; (ii) every linear program can be solved by a
sequence of constraint satisfaction problems with linear constraints;
(iii) in general, the perceptron learning algorithm solves a constraint
satisfaction problem with linear constraints in finitely many updates.
Combining the PLA with a probabilistic rescaling algorithm (which,
on average, increases the size of the feasable region) results in a prob-
abilistic algorithm for solving SDPs that runs in polynomial time.
We present preliminary results which demonstrate that the algo-
rithm works, but is not competitive with state-of-the-art interior
point methods.

1 Introduction

Semidefinite programming (SDP) is one of the most active research areas in optimi-
sation. Its appeal derives from important applications in combinatorial optimisation
and control theory, from the recent development of efficient algorithms for solving
SDP problems and the depth and elegance of the underlying optimisation theory [14],
which covers linear, quadratic, and second-order cone programming as special cases.

Recently, semidefinite programming has been discovered as a useful toolkit in machine
learning with applications ranging from pattern separation via ellipsoids [4] to kernel
matrix optimisation [5] and transformation invariant learning [6].

Methods for solving SDPs have mostly been developed in an analogy to linear pro-
gramming. Generalised simplex-like algorithms were developed for SDPs [11], but to
the best of our knowledge are currently merely of theoretical interest. The ellipsoid
method works by searching for a feasible point via repeatedly “halving” an ellipsoid
that encloses the affine space of constraint matrices such that the centre of the ellip-
soid is a feasible point [7]. However, this method shows poor performance in practice



as the running time usually attains its worst-case bound. A third set of methods
for solving SDPs are interior point methods [14]. These methods minimise a linear
function on convex sets provided the sets are endowed with self-concordant barrier
functions. Since such a barrier function is known for SDPs, interior point methods
are currently the most efficient method for solving SDPs in practice.

Considering the great generality of semidefinite programming and the complexity of
state-of-the-art solution methods it is quite surprising that the forty year old simple
perceptron learning algorithm [12] can be modified so as to solve SDPs. In this
paper we present a combination of the perceptron learning algorithm (PLA) with a
rescaling algorithm (originally developed for LPs [3]) that is able to solve semidefinite
programs in polynomial time. We start with a short introduction into semidefinite
programming and the perceptron learning algorithm in Section 2. In Section 3 we
present our main algorithm together with some performance guarantees, whose proofs
we only sketch due to space restrictions. While our numerical results presented in
Section 4 are very preliminary, they do give insights into the workings of the algorithm
and demonstrate that machine learning may have something to offer to the field of
convex optimisation.

For the rest of the paper we denote matrices and vectors by bold face upper and
lower case letters, e.g., A and x. We shall use x := x/ ‖x‖ to denote the unit length
vector in the direction of x. The notation A º 0 is used to denote x′Ax ≥ 0 for all
x, that is, A is positive semidefinite.

2 Learning and Convex Optimisation

2.1 Semidefinite Programming

In semidefinite programming a linear objective function is minimised over the image
of an affine transformation of the cone of semidefinite matrices, expressed by linear
matrix inequalities (LMI):

minimise
x∈Rn

c′x subject to F (x) := F0 +
n∑

i=1

xiFi º 0 , (1)

where c ∈ Rn and Fi ∈ Rm×m for all i ∈ {0, . . . , n}. The following proposition shows
that semidefinite programs are a direct generalisation of linear programs.
Proposition 1. Every semidefinite program is a linear program with infinitely many
linear constraints.

Proof. Obviously, the objective function in (1) is linear in x. For any u ∈ Rm, define
the vector au := (u′F1u, . . . ,u′Fnu). Then, the constraints in (1) can be written as

∀u ∈ Rm : u′F (x)u ≥ 0 ⇔ ∀u ∈ Rm : x′au ≥ −u′F0u . (2)

This is a linear constraint in x for all u ∈ Rm (of which there are infinitely many).

Since the objective function is linear in x, we can solve an SDP by a sequence of
semidefinite constraint satisfaction problems (CSPs) introducing the additional con-
straint c′x ≤ c0 and varying c0 ∈ R. Moreover, we have the following proposition.
Proposition 2. Any SDP can be solved by a sequence of homogenised semidefinite
CSPs of the following form:

find x ∈ Rn+1 subject to G (x) :=
n∑

i=0

xiGi Â 0 .



Algorithm 1 Perceptron Learning Algorithm
Require: A (possibly) infinite set A of vectors a ∈ Rn

Set t ← 0 and xt = 0
while there exists a ∈ A such that x′ta ≤ 0 do

xt+1 = xt + a
t ← t + 1

end while
return xt

Proof. In order to make F0 and c0 dependent on the optimisation variables, we
introduce an auxiliary variable x0 > 0; the solution to the original problem is given
by x−1

0 · x. Moreover, we can repose the two linear constraints c0x0 − c′x ≥ 0 and
x0 > 0 as an LMI using the fact that a block-diagonal matrix is positive (semi)definite
if and only if every block is positive (semi)definite. Thus, the following matrices are
sufficient:

G0 =




F0 0 0
0′ c0 0
0′ 0 1


 , Gi =

( Fi 0 0
0 −ci 0
0 0 0

)
.

Given an upper and a lower bound on the objective function, repeated bisection can
be used to determine the solution in O(log 1

ε ) steps to accuracy ε.

In order to simplify notation, we will assume that n ← n+1 and m ← m+2 whenever
we speak about a semidefinite CSP for an SDP in n variables with Fi ∈ Rm×m.

2.2 Perceptron Learning Algorithm

The perceptron learning algorithm (PLA) [12] is an online procedure which finds a
linear separation of a set of points from the origin (see Algorithm 1). In machine
learning this algorithm is usually applied to two sets A+1 and A−1 of points labelled
+1 and −1 by multiplying every data vector ai by its class label1; the resulting vector
xt (often referred to as the weight vector in perceptron learning) is then read as the
normal of a hyperplane which separates the sets A+1 and A−1.

A remarkable property of the perceptron learning algorithm is that the total number
t of updates is independent of the cardinality of A but can be upper bounded simply
in terms of the following quantity

ρ (A) := max
x∈Rn

ρ (A,x) := max
x∈Rn

min
a∈A

a′x .

This quantity is known as the (normalised) margin of A in the machine learning
community or as the radius of the feasible region in the optimisation community.
It quantifies the radius of the largest ball that can be fitted in the convex region
enclosed by all a ∈ A (the so-called feasible set). Then, the perceptron convergence
theorem [10] states that t ≤ ρ−2 (A).

For the purpose of this paper we observe that Algorithm 1 solves a linear CSP where
the linear constraints are given by the vectors a ∈ A. Moreover, by the last argument
we have the following proposition.
Proposition 3. If the feasible set has a positive radius, then the perceptron learning
algorithm solves a linear CSP in finitely many steps.

It is worth mentioning that in the last few decades a series of modified PLAs A
have been developed (see [2] for a good overview) which mainly aim at guaranteeing

1Note that sometimes the update equation is given using the unnormalised vector a.



Algorithm 2 Rescaling algorithm
Require: A maximal number T ∈ N+ of steps and a parameter σ ∈ R+

Set y uniformly at random in {z : ‖z‖ = 1}
for t = 0, . . . , T do

Find au such that ȳ′āu := u′G(ȳ)u√Pn
j=1(u

′Gju)2
≤ −σ (u ≈ smallest EV of G (ȳ))

if u does not exists then
Set ∀i ∈ {1, . . . , n} : Gi ← Gi + yiG (y); return y

end if
y ← y − (y′au)au; t ← t + 1

end for
return unsolved

not only feasibility of the solution xt but also a lower bound on ρ (A,xt). These
guarantees usually come at the price of a slightly larger mistake bound which we
shall denote by M (A, ρ (A)), that is, t ≤ M (A, ρ (A)).

3 Semidefinite Programming by Perceptron Learning

If we combine Propositions 1, 2 and 3 together with Equation (2) we obtain a percep-
tron algorithm that sequentially solves SDPs. However, there remain two problems:

1. How do we find a vector a ∈ A such that x′a ≤ 0?
2. How can we make the running time of this algorithm polynomial in the

description length of the data?2

In order to address the first problem we notice that A in Algorithm 1 is not explicitly
given but is defined by virtue of

A (G1, . . . ,Gn) := {au := (u′G1u, . . . ,u′Gnu) | u ∈ Rm } .

Hence, finding a vector au ∈ A such that x′au ≤ 0 is equivalent to identifying a
vector u ∈ Rm such that

n∑

i=1

xiu′Giu = u′G (x)u ≤ 0 .

One possible way of finding such a vector u (and consequently au) for the current
solution xt in Algorithm 1 is to calculate the eigenvector corresponding to the smallest
eigenvalue of G (xt); if this eigenvalue is positive, the algorithm stops and outputs
xt. Note, however, that computationally easier procedures can be applied to find a
suitable u ∈ Rm (see also Section 4).

The second problem requires us to improve the dependency of the runtime from
O(ρ−2) to O(− log(ρ)). To this end we employ a probabilistic rescaling algorithm
(see Algorithm 2) which was originally developed for LPs [3]. The purpose of this al-
gorithm is to enlarge the feasible region (in terms of ρ (A (G1, . . . ,Gn))) by a constant
factor κ, on average, which would imply a decrease in the number of updates of the
perceptron algorithm exponential in the number of calls to this rescaling algorithm.
This is achieved by running Algorithm 2. If the algorithm does not return unsolved
the rescaling procedure on the Gi has the effect that au changes into au + (y′au)y
for every u ∈ Rm. In order to be able to reconstruct the solution xt to the original
problem, whenever we rescale the Gi we need to remember the vector y used for
rescaling. In Figure 1 we have shown the effect of rescaling for three linear con-

2Note that polynomial runtime is only guaranteed if ρ−2 (A (G1, . . . ,Gn)) is bounded by
a polynomial function of the description length of the data.



Figure 1: Illustration of the rescaling procedure. Shown is the feasible region and
one feasible point before (left) and after (left) rescaling with the feasible point.

straints in R3. The main idea of Algorithm 2 is to find a vector y that is σ-close to
the current feasible region and hence leads to an increase in its radius when used for
rescaling. The following property holds for Algorithm 2.
Theorem 1. Assume Algorithm 2 did not return unsolved. Let σ ≤ 1

32n , ρ be the
radius of the feasible set before rescaling and ρ′ be the radius of the feasible set after
rescaling and assume that ρ ≤ 1

4n . Then

1. ρ′ ≥ (
1− 1

16n

)
ρ with probability at most 3

4 .

2. ρ′ ≥ (
1 + 1

4n

)
ρ with probability at least 1

4 .

The probabilistic nature of the theorem stems from the fact that the rescaling can
only be shown to increase the size of the feasible region if the (random) initial value
y already points sufficiently closely to the feasible region. A consequence of this the-
orem is that, on average, the radius increases by κ = (1 + 1/64n) > 1. Algorithm 3
combines rescaling and perceptron learning, which results in a probabilistic polyno-
mial runtime algorithm3 which alternates between calls to Algorithm 1 and 2 . This
algorithm may return infeasible in two cases: either Ti many calls to Algorithm 2
have returned unsolved or L many calls of Algorithm 1 together with rescaling have
not returned a solution. Each of these two conditions can either happen because of
an “unlucky” draw of y in Algorithm 2 or because ρ (A (G1, . . . ,Gn)) is too small.
Following the argument in [3] one can show that for L = −2048n · ln (ρmin) the total
probability of returning infeasible despite ρ (A (G1, . . . ,Gn)) > ρmin cannot exceed
exp (−n).

4 Experimental Results

The experiments reported in this section fall into two parts. Our initial aim was
to demonstrate that the method works in practice and to assess its efficacy on a

3Note that we assume that the optimisation problem in line 3 of Algorithm 2 can be
solved in polynomial time with algorithms such as Newton-Raphson.



Algorithm 3 Positive Definite Perceptron Algorithm
Require: G1, . . . ,Gn ∈ Rm×m and maximal number of iteration L ∈ N+

Set B = In

for i = 1, . . . , L do
Call Algorithm 1 for at most M

(
A, 1

4n

)
many updates

if Algorithm 1 converged then return Bx
Set δi = 3

π2i2 and Ti = ln(δi)

ln( 3
4 )

for j = 1, . . . , Ti do
Call Algorithm 2 with T = 1024n2 ln (n) and σ = 1

32n

if Algorithm 2 returns y then B ← B (In + yy′); goto the outer for-loop
end for
return infeasible

end for
return infeasible

benchmark example from graph bisection [1].

These experiments would also indicate how competitive the baseline method is when
compared to other solvers. The algorithm was implemented in MATLAB and all of
the experiments were run on 1.7GHz machines. The time taken can be compared
with a standard method SDPT3 [13] partially implemented in C but running under
MATLAB.

We considered benchmark problems arising from semidefinite relaxations to the
MAXCUT problems of weighted graphs, which is posed as finding a maximum weight
bisection of a graph. The benchmark MAXCUT problems have the following relaxed
SDP form (see [8]):

minimise
x∈Rn

1′x subject to −1
4

(diag(C1)−C)
︸ ︷︷ ︸

F0

+diag (x)︸ ︷︷ ︸P
i xiFi

º 0 , (3)

where C ∈ Rn×n is the adjacency matrix of the graph with n vertices.

The benchmark used was ‘mcp100’ provided by SDPLIB 1.2 [1]. For this problem,
n = 100 and it is known that the optimal value of the objective function equals
226.1574. The baseline method used the bisection approach to identify the critical
value of the objective, referred to throughout this section as c0.

Figure 2 (left) shows a plot of the time per iteration against the value of c0 for the
first four iterations of the bisection method. As can be seen from the plots the time
taken by the algorithm for each iteration is quite long, with the time of the fourth
iteration being around 19,000 seconds. The initial value of 999 for c0 was found
without an objective constraint and converged within 0.012 secs. The bisection then
started with the lower (infeasible) value of 0 and the upper value of 999. Iteration 1
was run with c0 = 499.5, but the feasible solution had an objective value of 492. This
was found in just 617 secs. The second iteration used a value of c0 = 246 slightly
above the optimum of 226. The third iteration was infeasible but since it was quite
far from the optimum, the algorithm was able to deduce this fact quite quickly. The
final iteration was also infeasible, but much closer to the optimal value. The running
time suffered correspondingly taking 5.36 hours. If we were to continue the next
iteration would also be infeasible but closer to the optimum and so would take even
longer.

The first experiment demonstrated several things. First, that the method does in-
deed work as predicted; secondly, that the running times are very far from being
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Figure 2: (Left) Four iterations of the bisection method showing time taken per it-
eration (outer for loop in Algorithm 3) against the value of the objective constraint.
(Right) Decay of the attained objective function value while iterating through Al-
gorithm 3 with a non-zero threshold of τ = 500.

competitive (SDPT3 takes under 12 seconds to solve this problem) and thirdly that
the running times increase as the value of c0 approaches the optimum with those
iterations that must prove infeasibility being more costly than those that find a so-
lution.

The final observation prompted our first adaptation of the base algorithm. Rather
than perform the search using the bisection method we implemented a non-zero
threshold on the objective constraint (see the while-statement in Algorithm 1). The
value of this threshold is denoted τ , following the notation introduced in [9].

Using a value of τ = 500 ensured that when a feasible solution is found, its objective
value is significantly below that of the objective constraint c0. Figure 2 (right)
shows the values of c0 as a function of the outer for-loops (iterations); the algorithm
eventually approached its estimate of the optimal value at 228.106. This is within
1% of the optimum, though of course iterations could have been continued. Despite
the clear convergence, using this approach the running time to an accurate estimate
of the solution is still prohibitive because overall the algorithm took approximately
60 hours of CPU time to find its solution.

A profile of the execution, however, revealed that up to 93% of the execution time is
spent in the eigenvalue decomposition to identify u. Observe that we do not need a
minimal eigenvector to perform an update, simply a vector u satisfying

u′G(x)u < 0 (4)

Cholesky decomposition will either return u satisfying (4) or it will converge indicat-
ing that G(x) is psd and Algorithm 1 has converged.

5 Conclusions

Semidefinite programming has interesting applications in machine learning. In turn,
we have shown how a simple learning algorithm can be modified to solve higher
order convex optimisation problems such as semidefinite programs. Although the
experimental results given here suggest the approach is far from computationally
competitive, the insights gained may lead to effective algorithms in concrete applica-
tions in the same way that for example SMO is a competitive algorithm for solving
quadratic programming problems arising from support vector machines. While the



optimisation setting leads to the somewhat artificial and inefficient bisection method
the positive definite perceptron algorithm excels at solving positive definite CSPs
as found, e.g., in problems of transformation invariant pattern recognition as solved
by Semidefinite Programming Machines [6]. In future work it will be of interest to
consider the combined primal-dual problem at a predefined level ε of granularity so
as to avoid the necessity of bisection search.
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