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Abstract

Accurate spectral decomposition is essential for the analysis and
diagnosis of histologically stained tissue sections. In this paper we
present the first automated system for performing this decompo-
sition. We compare the performance of our system with ground
truth data and report favorable results.

1 Introduction

Potentially cancerous tissue samples are analyzed by staining them with a combi-
nation of two or more dyes. We consider the problem of recovering the amount of
dye absorbed for each of the stains from a stack of hyperspectral images of the tis-
sue sample. Since the exact spectral profile of the dyes varies from one experiment
to the next and is not available to the pathologist, the problem is an instance of
blind source separation. The problem is of special interest to clinical and research
pathologists as the amount of dye absorbed by the sample is used to determine a
quantitative estimate of the amount of cancerous cells present in the tissue.

The current state of the art solution requires an expert to hand click representative
points in the tissue image to indicate “pure” dye spectra. This procedure requires
human intervention and hence is time consuming and error prone.

In this paper we present the first system capable of performing this color decomposi-
tion in a fully automated manner. We also describe a novel procedure for acquiring
the ground truth data and quantifying the performance of our system.



The organization of the paper is as follows. In section 2 we address the problem of
image alignment in hyperspectral stacks. Section 3 presents the problem of color
unmixing and proposes two unsupervised techniques as solutions. Data acquisition
and experiments are discussed in Section 4. Section 5 summarizes the study and
provides concluding remarks.

2 Multi-Spectral Alignment

Color unmixing is a challenging problem in itself, but it is complicated further by the
practicalities of multispectral imaging: the component spectral images are usually
misaligned, due to chromatic aberration and shifting of the stage. If the images
comprising the spectral stack are out of alignment by as little as half a pixel, the
estimated stain percentages at a given pixel can be altered drastically. This can
result in large inaccuracies in the resulting cancer diagnosis.

Empirically, we have observed that the misalignments between images in the spec-
tral stack can be modeled as small affine transforms, i.e. global translation, stretch-
ing, and rotation. Letting I(x) and J(x) denote two images, where x = (z,y)",
this assumption is expressed as

J(Ax +d) = I(x)

where A is the 2 x 2 matrix of affine coefficients
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and d is a 2D translation vector.

In the case of unimodal images, the iterative method of Shi and Tomasi [12] has
been very successful for the estimation of differential (subpixel) affine transforms,
e.g. from frame to frame in a video sequence. However, feeding cross-modal images
directly to this algorithm is ineffective since they violatie the brightness constancy
assumption [3]. We have observed, however, that the high spatial-frequency struc-
tures, e.g. edges and lines, tend to be consistent throughout the stack. This forms
the basis of our alignment technique. We use the Shi-Tomasi algorithm on a band-
pass filtered version of the images in the stack. To perform the filtering we apply a
Laplacian of Gaussian (LoG) kernel [8], expressed as

h(x) = V2 lIxlI*/20°

where ¢ controls the width of the filter, to each image. The LoG kernel acts as a
bandpass filter, suppressing constant regions and smooth shading, admitting edges
and lines, and suppressing high frequency noise. We empirically determined the
optimal parameters for the filtering to be 0=0.5 and a window size of 10 pixels. With
this step used as preprocessing, Shi and Tomasi’s algorithm is able to register this
pair of images. An example of a synthesized color image composed of a 3D spectral
stack is shown with and without this registration step in Figure 1; the blurring
caused by misalignment and the subsequent sharpening resulting from registration
is evident.

3 Color Unmixing

Once the registration problem is adequately addressed, we can proceed with the
determination of stain concentrations. The problem in its full generality is an
instance of the blind source separation problem. Given a spectral stack of ns images



Figure 1: Synthesized color image representation of the same tissue core from a 10
dimensional spectral stack (a) with and (b) without differential affine registration.

obtained from imaging a tissue sample stained with ng dyes, with ngy > ng4, we wish
to recover the staining due to each individual dye.

In an ideal world, the spectral profile of each dye would be exactly aligned with one
of the spectral bands, and the absorptions measured therein would directly yield
the stain concentrations. Realistically, however, the spectral profile of the dyes
overlap and extend over several spectral bands, and the goal of recovering the ng4
components representing the dye percentages requires more careful analysis.

The problem of unmixing the dyes can be formulated as a matrix factorization
problem:

X = AS (1)

Here X is an ng X [ column matrix, where [ is the number of pixels and the entry
X, is the brightness of the i'" pixel in the image in to the j*" spectral band. The
matrix A is an ng X ng matrix where each column of the matrix corresponds to the
one of the dyes used in staining the tissue. S is a n, x [ matrix, with the entry S;;
indicating the contribution of the i*" dye to the j*" pixel.

The current state of the art solution for this problem in the field of automated
pathology is Color Deconvolution [11], which yields acceptable results, but requires
manual interaction in the form of mouse clicks on seed colors for the dyes. This is
an example of a supervised technique. However, given the data matrix X, there are
a number of ways in which Equation (1) can be solved in a completely automatic
manner without any human intervention. The three main classes of such meth-
ods are Principal Component Analysis (PCA), Non-negative Matrix Factorization
(NMF) and Independent Component Analysis (ICA).

In this work we assume that staining is an additive process. Once a part of a tissue
has been stained with a dye, addition of another stain can only increase the staining.
The additivity of the stains combined with the physical constraint that each dye
color will have a non-negative response in each frequency band implies that A and
B are forced to be restricted to the class of non-negative matrices.

Methods based on PCA work by enforcing orthogonality constraints on the columns
of A and are not well suited for recovering the factorization AS. PCA depends
heavily on cancellation effects, i.e. a balancing of positive and negative terms as
occurs with Gibbs’ phenomenon in Fourier series. This will result in PCA returning
A and S with negative entries which have no physical basis. In the following we
shall investigate the use of algorithms based on NMF and ICA.



3.1 Non-negative Matrix Factorization

NMF is in principle well suited to the task of color unmixing, as it finds a factor-
ization of X into A and S such that

[A,S] = argmin||X — AS|| (2)
AS

subject to
A;jj >0, S;;2>0

The above problem is underconstrained; it has a scale ambiguity. Given a solution
[A, S] of the above problem, [a¢A,S/a] for o # 0 is also a solution to this problem.
We solve this problem by constraining each column of A to have unit norm. This
does not affect the final solution, since only the proportion of each stain is needed
in the final analysis; the exact intensity of the constituent stain is not important.

The choice of the norm || - || decides the particular algorithm used for performing
the minimization. We have implemented an iterative algorithm for recovering the
non-negative factorization of a matrix due to Seung & Lee [7]. We use the Ly norm
as a measure of the error.

3.2 Independent Component Analysis

An alternate approach to matrix factorization is Independent Component Analysis
(ICA)[4]. While Non-negative Matrix Factorization is based on enforcing a non-
negativity constraint, it says nothing about the image formation process. ICA
is based on a generative view of the data, where the data is assumed to be a
result of superpositioning a number of stochastically independent processes. In the
case of histological staining, this corresponds to assuming that each dye stains the
tissue independently of all the other dyes. The rows of the matrix S represent the
individual stochastic processes and the columns of A code their interactions.

We implemented the Joint Approximate Diagonalization of Eigenmatrices (JADE)
algorithm to recover the independent components of X [2]. This algorithm calcu-
lates the ICA decomposition of X by calculating the eigenvalue decomposition of
the cumulant tensor of the data. The eigenvalues of cumulant tensor are vectors
corresponding to the independent components of the mixture.

4 Experimental Results

4.1 Sample Preparation and Data Acqusition

The histologically stained tissues used in this study were derived from human biop-
sies. The tissues were fixed in Bouin’s solution, and embedded in paraffin. Dewaxed
tissue sections were exposed to polyclonal antibodies (PAB) generated against syn-
thetic peptides and confirmed to be specific for the proteins of interest. The sections
were stained using a diaminobenzidine (DAB)-based detection method employing
the Envision-Plus-Horseradish Peroxidase (HRP) system using an automated stain-
ing technique [5, 6]. The DAB immunohistochemistry stain used for the tissue
samples shown here covers the majority of the visible range of the color spectra
under the transmission of white light.

Great care must be taken in the acquisition of color images since the extraction of
spectral information is highly dependent on the quality of the raw data. Hyper-
spectral imaging has been shown to be the best means of doing so.



A spectral image stack can be acquired using a number of different approaches. We
use a setup based on a set of fixed bandpass filters. The filters are placed in the
optical path of the light in front of the light source or camera and transmit only
the desired wavelength bands.

In the following experiments the images were acquired on a scanning cytometer
[9, 10, 1] with a 20x, 0.5 NA Fluor Nikon objective lens using a set of 10 equally
spaced band pass filters ranging from 413 nm to 663 nm. The dynamic range of each
of the spectral bands was maximized by controlling the gain and the exposure of
the imaging system. This is required to ensure an accurate hyperspectral-to-RGB
reconstruction for result visualization. It is important to note that the gain and
exposure coeflicients were inverted prior to the unmixing as they have no bearing
on the staining process.

In order to quantitatively evaluate the decomposition provided by NMF and ICA,
we prepared a set of ground truth data using the following procedure. Using a set of
four tissue samples, we first applied the DAB stain and captured the hyperspectral
image stack. We then added the hematoxylin stain and acquired a second image
stack. The second stack serves as the input to our algorithm and the resulting
decomposition, which estimates the DAB staining, is compared with the first stack,
which serves as the ground truth.

We now experimentally evaluate the use of NMF and ICA for the color decomposi-
tion problem. While reconstruction error represents a simple quantitative measure,
it does not provide a standard for judging how accurately the estimated compo-
nents represent the dye concentrations. We quantify the performance by comparing
the ground truth single-stained image to the corresponding automatically extracted
component of the doubly-stained tissue sample. Figure 2 reports the performance
of the two algorithms. The error measure used is

Zi(‘[i - Iz‘)2
> 17
where the sum is over all pixels, and I; and fi denote the ground truth and the

estimate, respectively. Figure 3 shows the results of applying NMF and ICA to an
image patch.

error = 100 x

(3)

NMF ICA
setl 18.15 | 12.81
set2 18.79 | 14.99
set3 4.47 | 19.42
set4 5.04 | 18.12
overall | 12.65 | 18.75

Figure 2: This table shows the percent error for the two unmixing algo-
rithms across the four image sets. The four sets of images are available at
http://vision.ucsd.edu/.

5 Discussion

The above experiments indicate that both NMF and ICA are capable of performing
color decomposition of tissue samples stained with multiple histological dyes. How-
ever, there remain a number of sources of error, both during image acquisition as
well as in the decomposition stage. These include errors due to imperfect focussing



F b8
matoxylin

B

Figure 3: Color unmixing using Non-negative Matrix factorization and Independent
Component Analysis. Figure (a) shows a segment of the tissue stained using DAB,
(b) shows the same tissue segment with DAB and Hematoxylin staining. The image
in figure (b) serves as input to the two unmixing algorithms, the output of which is
shown in (c) and (d). Figure (c) shows the DAB stain estimate produced by NMF
and (d) shows the DAB staining estimated by ICA

in the various spectral bands and distortion in the acquired images which cannot
be accounted for by optical flow based alignment methods such as Shi & Tomasi’s
algorithm. The principal source of discrepancy between the decomposition and the
ground truth images, however, is caused by the chemical interaction between the
various dyes used for staining. Measurement error due to dye interaction can be as
high as 15%[13]. In this light, both ICA and NMF provide good results, and we
expect that improvements in the image acquisition and registration procedure will
result in systems capable of delivering performance close to the theoretical optimum.

In conclusion, we have addressed the problem of image registration for the planes in
a hyperspectral stack for spectral information extraction and we proposed the use of
two unsupervised algorithms, Non-negative Matrix Factorization and Independent
Component Analysis, for extracting the contributions of various histological stains
to the overall spectral composition throughout the tissue sample. We demonstrate
the performance of these algorithms by comparing them with ground truth data.

We intend to address errors in the image acquisition and registration to further
reduce the decomposition error in future work.
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