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  Abstract 

At a cocktail party, a listener can selectively attend to a single 
voice and filter out other acoustical interferences. How to simulate 
this perceptual ability remains a great challenge. This paper 
describes a novel supervised learning approach to speech 
segregation, in which a target speech signal is separated from 
interfering sounds using spatial location cues: interaural time 
differences (ITD) and interaural intensity differences (IID). 
Motivated by the auditory masking effect, we employ the notion of 
an ideal time-frequency binary mask, which selects the target if it 
is stronger than the interference in a local time-frequency unit. 
Within a narrow frequency band, modifications to the relative 
strength of the target source with respect to the interference trigger 
systematic changes for estimated ITD and IID. For a given spatial 
configuration, this interaction produces characteristic clustering in 
the binaural feature space. Consequently, we perform pattern 
classification in order to estimate ideal binary masks. A systematic 
evaluation in terms of signal-to-noise ratio as well as automatic 
speech recognition performance shows that the resulting system 
produces masks very close to ideal binary ones. A quantitative 
comparison shows that our model yields significant improvement 
in performance over an existing approach. Furthermore, under 
certain conditions the model produces large speech intelligibility 
improvements with normal listeners. 

1 Int roduct ion 

The perceptual ability to detect, discriminate and recognize one utterance in a 
background of acoustic interference has been studied extensively under both 
monaural and binaural conditions [1, 2, 3]. The human auditory system is able to 
segregate a speech signal from an acoustic mixture using various cues, including 
fundamental frequency (F0), onset time and location, in a process that is known as 



 

auditory scene analysis (ASA) [1]. F0 is widely used in computational ASA systems 
that operate upon monaural input – however, systems that employ only this cue are 
limited to voiced speech [4, 5, 6]. Increased speech intelligibility in binaural 
listening compared to the monaural case has prompted research in designing 
cocktail-party processors based on spatial cues [7, 8, 9]. Such a system can be 
applied to, among other things, enhancing speech recognition in noisy environments 
and improving binaural hearing aid design. 

In this study, we propose a sound segregation model using binaural cues extracted 
from the responses of a KEMAR dummy head that realistically simulates the 
filtering process of the head, torso and external ear. A typical approach for signal 
reconstruction uses a time-frequency (T-F) mask: T-F units are weighted selectively 
in order to enhance the target signal. Here, we employ an ideal binary mask [6], 
which selects the T-F units where the signal energy is greater than the noise energy. 
The ideal mask notion is motivated by the human auditory masking phenomenon, in 
which a stronger signal masks a weaker one in the same critical band. In addition, 
from a theoretical ASA perspective, an ideal binary mask gives a performance 
ceiling for all binary masks. Moreover, such masks have been recently shown to 
provide a highly effective front-end for robust speech recognition [10]. We show for 
mixtures of multiple sound sources that there exists a strong correlation between the 
relative strength of target and interference and estimated ITD/IID, resulting in a 
characteristic clustering across frequency bands. Consequently, we employ a 
nonparametric classification method to determine decision regions in the joint  ITD-
IID feature space that correspond to an optimal estimate for an ideal mask.  

Related models for estimating target masks through clustering have been proposed 
previously [11, 12]. Notably, the experimental results by Jourjine et al. [12] suggest 
that speech signals in a multiple-speaker condition obey to a large extent disjoint 
orthogonality in time and frequency. That is, at most one source has a nonzero 
energy at a specific time and frequency. Such models, however, assume input 
directly from microphone recordings and head-related filtering is not considered. 
Simulation of human binaural hearing introduces different constraints as well as 
clues to the problem. First, both ITD and IID should be utilized since IID is more 
reliable at higher frequencies than ITD. Second, frequency-dependent combinations 
of ITD and IID arise naturally for a fixed spatial configuration. Consequently, 
channel-dependent training should be performed for each frequency band. 

The rest of the paper is organized as follows. The next section contains the 
architecture of the model and describes our method for azimuth localization. Section 
3 is devoted to ideal binary mask estimation, which constitutes the core of the 
model. Section 4 presents the performance of the system and a quantitative 
comparison with the Bodden [7] model. Section 5 concludes our paper. 

2 Model archi tecture and azimuth locali zat ion 

Our model consists of the following stages: 1) a model of the auditory periphery; 2) 
frequency-dependent ITD/IID extraction and azimuth localization; 3) estimation of 
an ideal binary mask. 

The input to our model is a mixture of two or more signals presented at different, 
but fixed, locations. Signals are sampled at 44.1 kHz. We follow a standard 
procedure for simulating free-field acoustic signals from monaural signals (no 
reverberations are modeled). Binaural signals are obtained by filtering the monaural 
signals with measured head-related transfer functions (HRTF) from a KEMAR 
dummy head [13]. HRTFs introduce a natural combination of ITD and IID into the 
signals that is extracted in the subsequent stages of the model. 



 

To simulate the auditory periphery we use a bank of 128 gammatone filters in the 
range of 80 Hz to 5 kHz as described in [4]. In addition, the gains of the gammatone 
filters are adjusted in order to simulate the middle ear transfer function. In the final 
step of the peripheral model, the output of each gammatone filter is half-wave 
rectified in order to simulate firing rates of the auditory nerve. Saturation effects are 
modeled by taking the square root of the signal.  

Current models of azimuth localization almost invariably start with Jeffress’s cross-
correlation mechanism. For all frequency channels, we use the normalized cross-
correlation computed at lags equally distributed in the plausible range from –1 ms to 
1 ms using an integration window of 20 ms. Frequency-dependent nonlinear 
transformations are used to map the time-delay axis onto the azimuth axis resulting 
in a cross-correlogram structure. In addition, a ‘skeleton’ cross-correlogram is 
formed by replacing the peaks in the cross-correlogram with Gaussians of narrower 
widths that are inversely proportional to the channel center frequency. This results 
in a sharpening effect, similar in principle to lateral inhibition. Assuming fixed 
sources, multiple locations are determined as peaks after summating the skeleton 
cross-correlogram across frequency and time. The number of sources and their 
locations computed here, as well as the target source location, feed to the next stage. 

3 Binary mask est imat ion 

The objective of this stage of the model is to develop an efficient mechanism for 
estimating an ideal binary mask based on observed patterns of extracted ITD and 
IID features. Our theoretical analysis for two-source interactions in the case of pure 
tones shows relatively smooth changes for ITD and IID with the relative strength R 
between the two sources in narrow frequency bands [14]. More specifically, when 
the frequencies vary uniformly in a narrow band the derived mean values of 
ITD/IID estimates vary monotonically with respect to R. 

To capture this relationship in the context of real signals, statistics are collected for 
individual spatial configurations during training. We employ a training corpus 
consisting of 10 speech utterances from the TIMIT database (see [14] for details). In 
the two-source case, we divide the corpus in two equal sets: target and interference. 
In the three-source case, we select 4 signals for the target set and 2 interfering sets 
of 3 signals each. 

For all frequency channels, local estimates of ITD, IID and R are based on 20-ms 
time frames with 10 ms overlap between consecutive time frames. In order to 
eliminate the multi-peak ambiguity in the cross-correlation function for mid- and 
high-frequency channels, we use the following strategy. We compute ITDi  as the 
peak location of the cross-correlation in the range iωπ /2  centered at the target ITD, 

where iω  indicates the center frequency of the i th channel. On the other hand, IID 
and R are computed as follows: 
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where il  and ir  refer to the left and right peripheral output of the ith channel, 
respectively, is  refers to the output for the target signal, and in  that for the acoustic 
interference. In computing IIDi, we use 20 instead of 10 in order to compensate for 
the square root operation in the peripheral model. 



 

Fig. 1 shows empirical results obtained for a two-source configuration on the 
training corpus. The data exhibits a systematic shift for both ITD and IID with 
respect to the relative strength R. Moreover, the theoretical mean values obtained in 
the case of pure tones [14] match the empirical ones very well. This observation 
extends to multiple-source scenarios. As an example, Fig. 2 displays histograms that 
show the relationship between R and both ITD (Fig. 2A) and IID (Fig. 2B) for a 
three-source situation. Note that the interfering sources introduce systematic 
deviations for the binaural cues. Consider a worst case: the target is silent and two 
interferences have equal energy in a given T-F unit. This results in binaural cues 
indicating an auditory event at half of the distance between the two interference 
locations; for Fig. 2, it is 0° - the target location. However, the data in Fig. 2 has a 
low probability for this case and shows instead a clustering phenomenon, suggesting 
that in most cases only one source dominates a T-F unit. 
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Figure 1. Relationship between ITD/IID and relative strength R for a two-source 
configuration: target in the median plane and interference on the right side at 30°. The 
solid curve shows the theoretical mean and the dash curve shows the data mean. A: The 
scatter plot of ITD and R estimates for a filter channel with center frequency 500 Hz. B: 
Results for IID for a filter channel with center frequency 2.5 kHz.  
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Figure 2. Relationship between ITD/IID and relative strength R for a three-source 
configuration: target in the median plane and interference at -30° and 30°. Statistics are 
obtained for a channel with center frequency 1.5 kHz. A : Histogram of ITD and R 
samples. B: Histogram of IID and R samples. C: Clustering in the ITD-IID space. 

By displaying the information in the joint ITD-IID space (Fig. 2C), we observe 
location-based clustering of the binaural cues, which is clearly marked by strong 
peaks that correspond to distinct active sources. There exists a tradeoff between ITD 
and IID across frequencies, where ITD is most salient at low frequencies and IID at 
high frequencies [2]. But a fixed cutoff frequency that separates the effective use of 
ITD and IID does not exist for different spatial configurations. This motivates our 
choice of a joint ITD-IID feature space that optimizes the system performance 
across different configurations. Differential training seems necessary for different 
channels given that there exist variations of ITD and, especially, IID values for 
different center frequencies.  

Since the goal is to estimate an ideal binary mask, we focus on detecting decision 
regions in the 2-dimensional ITD-IID space for individual frequency channels. 



 

Consequently, supervised learning techniques can be applied. For the ith channel, 
we test the following two hypotheses.  The first one is 1H : target is dominant or 

5.0>iR , and the second one is 2H : interference is dominant or 5.0<iR . Based on 
the estimates of the bivariate densities )|( 1Hxp  and )|( 2Hxp  the classification is 

done by the maximum a posteriori decision rule: )|()()|()( 2211 HxpHpHxpHp > . 
There exist a plethora of techniques for probability density estimation ranging from 
parametric techniques (e.g. mixture of Gaussians) to nonparametric ones (e.g. kernel 
density estimators). In order to completely characterize the distribution of the data 
we use the kernel density estimation method independently for each frequency 
channel. One approach for finding smoothing parameters is the least-squares cross-
validation method, which is utilized in our estimation. 

One cue not employed in our model is the interaural time difference between signal 
envelopes (IED). Auditory models generally employ IED in the high-frequency 
range where the auditory system becomes gradually insensitive to ITD. We have 
compared the performance of the three binaural cues: ITD, IID and IED and have 
found no benefit for using IED in our system after incorporating ITD and IID [14]. 

4 Perfo rmance and comparison 

The performance of a segregation system can be assessed in different ways, 
depending on intended applications.  To extensively evaluate our model, we use the 
following three criteria: 1) a signal-to-noise (SNR) measure using the original target 
as signal; 2) ASR rates using our model as a front-end; and 3) human speech 
intelligibility tests.  

To conduct the SNR evaluation a segregated signal is reconstructed from a binary 
mask using a resynthesis method described in [5]. To quantitatively assess system 
performance, we measure the SNR using the original target speech as signal: 

 ( )∑∑ −=
t

eo
t

o tststsSNR 22
10 )()()(log10                                                          

where )(tso  represents the resynthesized original speech and )(tse  the 
reconstructed speech from an estimated mask. One can measure the initial SNR by 
replacing the denominator with )(tsN , the resynthesized original interference. 

Fig. 3 shows the systematic results for two-source scenarios using the Cooke corpus 
[4], which is commonly used in sound separation studies. The corpus has 100 
mixtures obtained from 10 speech utterances mixed with 10 types of intrusion. We 
compare the SNR gain obtained by our model against that obtained using the ideal 
binary mask across different noise types. Excellent results are obtained when the 
target is close to the median plane for an azimuth separation as small as 5°. 
Performance degrades when the target source is moved to the side of the head, from 
an average gain of 13.7 dB for the target in the median plane (Fig. 3A) to 1.7 dB 
when target is at 80° (Fig. 3B). When spatial separation increases the performance 
improves even for side targets, to an average gain of 14.5 dB in Fig. 3C. This 
performance profile is in qualitative agreement with experimental data [2].  

Fig. 4 illustrates the performance in a three-source scenario with target in the 
median plane and two interfering sources at –30° and 30°. Here 5 speech signals 
from the Cooke corpus form the target set and the other 5 form one interference set. 
The second interference set contains the 10 intrusions. The performance degrades 
compared to the two-source situation, from an average SNR of about 12 dB to 4.1 



 

dB. However, the average SNR gain obtained is approximately 11.3 dB. This ability 
of our model to segregate mixtures of more than two sources differs from blind 
source separation with independent component analysis. 

In order to draw a quantitative comparison, we have implemented Bodden’s 
cocktail-party processor using the same 128-channel gammatone filterbank [7]. The 
localization stage of this model uses an extended cross-correlation mechanism based 
on contralateral inhibition and it adapts to HRTFs. The separation stage of the 
model is based on estimation of the weights for a Wiener filter as the ratio between 
a desired excitation and an actual one. Although the Bodden model is more flexible 
by incorporating aspects of the precedence effect into the localization stage, the 
estimation of Wiener filter weights is less robust than our binary estimation of ideal 
masks. Shown in Fig. 5, our model shows a considerable improvement over the 
Bodden system, producing a 3.5 dB average improvement.  
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Figure 3. Systematic results for two-source configuration. Black bars correspond to the 
SNR of the initial mixture, white bars indicate the SNR obtained using ideal binary 
mask, and gray bars show the SNR from our model. Results are obtained for speech 
mixed with ten intrusion types (N0: pure tone; N1: white noise; N2: noise burst; N3: 
‘cocktail party’; N4: rock music; N5: siren; N6: trill telephone; N7: female speech; N8: 
male speech; N9: female speech). A: Target at 0°, interference at 5°.  B: Target at 80°, 
interference at 85°.  C: Target at 60°, interference at 90°. 
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Figure 4. Evaluation for a three-source 
configuration: target at 0° and two 
interfering sources at –30° and 30°. Black 
bars correspond to the SNR of the initial 
mixture, white bars to the SNR obtained 
using the ideal binary mask, and gray bars 
to the SNR from our model.  

Figure 5. SNR comparison between the 
Bodden model (white bars) and our 
model (gray bars) for a two-source 
configuration: target at 0° and 
interference at 30°. Black bars 
correspond to the SNR of the initial 
mixture. 

For the ASR evaluation, we use the missing-data technique as described in [10]. In 
this approach, a continuous density hidden Markov model recognizer is modified 
such that only acoustic features indicated as reliable in a binary mask are used 
during decoding. Hence, it works seamlessly with the output from our speech 
segregation system. We have implemented the missing data algorithm with the same 
128-channel gammatone filterbank. Feature vectors are obtained using the Hilbert 
envelope at the output of the gammatone filter. More specifically, each feature 
vector is extracted by smoothing the envelope using an 8-ms first-order filter, 
sampling at a frame-rate of 10 ms and finally log-compressing. We use the bounded 
marginalization method for classification [10]. The task domain is recognition of 



 

connected digits, and both training and testing are performed on acoustic features 
from the left ear signal using the male speaker dataset in the TIDigits database.  

Fig. 6A shows the correctness scores for a two-source condition, where the male 
target speaker is located at 0° and the interference is another male speaker at 30°. 
The performance of our model is systematically compared against the ideal masks  
for four SNR levels: 5 dB, 0 dB, -5 dB and –10 dB. Similarly, Fig. 6B shows the 
results for the three-source case with an added female speaker at -30°. The ideal 
mask exhibits only slight and gradual degradation in recognition performance with 
decreasing SNR and increasing number of sources. Observe that large improvements 
over baseline performance are obtained across all conditions.  This shows the strong 
potential of applying our model to robust speech recognition.    
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Figure 6. Recognition performance at different SNR values for original mixture (dotted 
line), ideal binary mask (dashed line) and estimated mask (solid line). A. Correctness 
score for a two-source case. B. Correctness score for a three-source case. 

Finally we evaluate our model on speech intelligibility with listeners with normal 
hearing. We use the Bamford-Kowal-Bench sentence database that contains short 
semantically predictable sentences [15]. The score is evaluated as the percentage of 
keywords correctly identified, ignoring minor errors such as tense and plurality. To 
eliminate potential location-based priming effects we randomly swap the locations 
for target and interference for different trials. In the unprocessed condition, binaural 
signals are produced by convolving original signals with the corresponding HRTFs 
and the signals are presented to a listener dichotically. In the processed condition, 
our algorithm is used to reconstruct the target signal at the better ear and results are 
presented diotically.  
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Figure 7. Keyword intelligibility score for twelve native English speakers (median 
values and interquartile ranges) before (white bars) and after processing (black bars). A. 
Two-source condition (0° and 5°). B. Three-source condition (0°, 30° and  -30°). 

Fig. 7A gives the keyword intelligibility score for a two-source configuration. Three 
SNR levels are tested: 0 dB, -5 dB and –10 dB, where the SNR is computed at the 
better ear. Here the target is a male speaker and the interference is babble noise. Our 
algorithm improves the intelligibility score for the tested conditions and the 
improvement becomes larger as the SNR decreases (61% at –10 dB). Our informal 
observations suggest, as expected, that the intelligibility score improves for 
unprocessed mixtures when two sources are more widely separated than 5°. Fig. 7B 
shows the results for a three-source configuration, where our model yields a 40% 



 

improvement. Here the interfering sources are one female speaker and another male 
speaker, resulting in an initial SNR of –10 dB at the better ear.  

 
5 Conclusion 

We have observed systematic deviations of the ITD and IID cues with respect to the 
relative strength between target and acoustic interference, and configuration-specific 
clustering in the joint ITD-IID feature space. Consequently, supervised learning of 
binaural patterns is employed for individual frequency channels and different spatial 
configurations to estimate an ideal binary mask that cancels acoustic energy in T-F 
units where interference is stronger. Evaluation using both SNR and ASR measures 
shows that the system estimates ideal binary masks very well. A comparison shows 
a significant improvement in performance over the Bodden model. Moreover, our 
model produces substantial speech intelligibility improvements for two and three 
source conditions. 
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