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Abstract

In large multiagent games, partial observability, coordination, and credit
assignment persistently plague attempts to design good learning algo-
rithms. We provide a simple and efficient algorithm that in part uses
a linear system to model the world from a single agent’s limited per-
spective, and takes advantage of Kalman filtering to allow an agent to
construct a good training signal and learn an effective policy.

1 Introduction

Learning in a single-agent stationary-environment setting can be a hard problem, but rela-
tive to the multi-agent learning problem, it is easy. The multi-agent learning problem has
been approached from a variety of approaches, from game theory to partially observable
Markov decision processes. The solutions are often complex. We take a different approach
in this paper, presenting a simplifying abstraction and a reward filtering technique that al-
lows computationally efficient and robust learning in large multi-agent environments where
other methods may fail or become intractable.

In many multi-agent settings, our learning agent does not have a full view of the world.
Other agents may be far away or otherwise obscured. At the very least, our learning agent
usually does not have a a complete representation of the internal states of the other agents.
This partial observability creates problems when the agent begins to learn about the world,
since it cannot see how the other agents are manipulating the environment and thus it cannot
ascertain the true world state. It may be appropriate to model the observable world as a
non-stationary Markov Decision Process (MDP). A separate problem arises when we train
multiple agents using a global reward signal. This is often the case in cooperative games
in which all the agents contribute towards attaining some common goal. Even with full
observability, the agents would need to overcome a credit assignment problem, since it may
be difficult to ascertain which agents were responsible for creating good reward signals. If
we cannot even observe what the other agents are doing, how can we begin to reason about
their role in obtaining the current reward?

Consider an agent in an MDP, learning to maximize a reward that is a function of its ob-
servable state and/or actions. There are many well-studied learning techniques to do this
[Sutton and Barto, 1999]. The effects of non-stationarity, partial observability, and global
rewards can be thought of as replacing the true reward signal with an alternate signal that is



a non-stationary function of the original reward. Think of the difference between learning
with a personal coach and learning in a large class where feedback is given only on col-
lective performance. This causes problems for an agent that is trying to use the collective
“global” reward signal to learn an optimal policy. Ideally the agent can recover the original
“personal reward signal” and learn using that signal rather than the global reward signal.

We show that in many naturally arising situations of this kind, an effective approach is for
an individual agent to model the observed global reward signal as the sum of its own con-
tribution (which is the personal reward signal on which it should base its learning) and a
random Markov process (which is the amount of the observed reward due to other agents
or external factors). With such a simple model, we can estimate both of these quantities ef-
ficiently using an online Kalman filtering process. Many external sources of reward (which
could be regarded as noise) can be modeled as or approximated by a random Markov pro-
cess, so this technique promises broad applicability. This approach is more robust than
trying to learn directly from the global reward, allowing agents to learn and converge faster
to an optimal or near-optimal policy.

2 Related Work

This type of problem has been approached in the past using a variety of techniques. For
slowly varying environments, Szita et al. [2002] show that Q-learning will converge as long
as the variation per time step is small enough. In our case, we attempt to tackle problems
where the variation could be larger. Choi et al. [1999] investigate models in which there
are “hidden modes”. When the environment switches between modes, all the rewards may
be altered. This works if we have fairly detailed domain knowledge about the types of
modes we expect to encounter. For variation produced by the actions of other agents in
the world, or for truly unobservable environmental changes, this technique would not work
as well. Auer et al. [1995] show that in arbitrarily varying environments, we can craft a
regret-minimizing strategy for playing repeated games. The results are largely theoretical
in nature and can yield fairly loose performance bounds, especially in stochastic games.
Rather than filtering the rewards as we will do, Ng et al. [1999] show that a potential func-
tion can be used to shape the rewards without affecting the learned policy while possibly
speeding up convergence. This assumes that learning would converge in the first place,
though possibly taking a very long time. Moreover, it requires domain knowledge to craft
this shaping function. Wolpert and Tumer [1999] provide a framework called COIN, or
collective intelligence, for analyzing distributed reinforcement learning. They stress the
importance of choosing utility functions that lead to good policies. Finally, McMahan et
al. [2003] discuss learning in the scenario in which the opponent gets to choose the agent’s
reward function.

The innovative aspect of our approach is to consider the reward signal as merely a signal
that is correlated with our true learning signal. We propose a model that captures the
relationship between the true reward and the noisy rewards in a wide range of problems.
Thus, without assuming much additional domain knowledge, we can use filtering methods
to recover the underlying true reward signal from the noisy observed global rewards.

3 Mathematical model

The agent assumes that the world possesses one or more unobservable state variables that
affect the global reward signal. These unobservable states may include the presence of other
agents or changes in the environment. Each agent models the effect of these unobservable
state variables on the global reward as an additive noise process bt that evolves according
to bt+1 = bt + zt, where zt is a zero-mean Gaussian random variable with variance σw.



The global reward that it observes if it is in state i at time t is gt = r(i) + bt, where r
is a vector containing the ideal training rewards r(i) received by the agent at state i. The
standard model that describes such a linear system is:

gt = Cxt + vt, vt ∼ N(0,Σ2)

xt = Axt−1 + wt, wt ∼ N(0,Σ1)

In our case, we desire estimates of xt = [rT
t bt]

T . We impart our domain knowledge into
the model by specifying the estimated variance and covariance of the components of xt.
In our case, we set Σ2 = 0 since we assume no observation noise when we experience
rewards; Σ1(j, j) = 0, j 6= |S| + 1, since the rewards are fixed and do not evolve over
time; Σ1(|S|+1, |S|+1) = σw since the noise term evolves with variance σw. The system
matrix is A = I , and the observation matrix is C = [0 0 . . . 1i . . . 0 0 1] where the 1i

occurs in the ith position when our observed state is state i.

Kalman filters [Kalman, 1960] are Bayes optimal, minimum mean-squared-error estimators
for linear systems with Gaussian noise. The agent applies the following causal Kalman
filtering equations at each time step to obtain maximum likelihood estimates for b and the
individual rewards r(i) for each state i given all previous observations. First, the estimate
x̂ and its covariance matrix P are updated in time based on the linear system model:

x̂′

t = Ax̂t−1 (1)

P ′

t = APt−1A
T + Σ1 (2)

Then these a priori estimates are updated using the current time period’s observation gt:

Kt = P ′

tC
T (CP ′

tC
T + Σ2)

−1 (3)

x̂t = x̂′

t + Kt(gt − Cx̂′

t) (4)

Pt = (I − KtC)P ′

t (5)

As shown, the Kalman filter also gives us the estimation error covariance Pt, from which
we know the variance of the estimates for r and b. We can also compute the likelihood
of observing gt given the model and all the previous observations. This will be handy
for evaluating the fit of our model, if needed. We could also create more complicated
models if our domain knowledge shows that a different model would be more suitable. For
example, if we wanted to capture the effect of an upward bias in the evolution of the noise
process (perhaps to model the fact that all the agents are learning and achieving higher
rewards), we could add another variable u, initialized such that u0 > 0, modifying x to be
x = [rT b u]T , and changing our noise term update equation to bt+1 = bt + ut + wt. In
other cases, we might wish to use non-linear models that would require more sophisticated
techniques such as extended Kalman filters.

For the learning mechanism, we use a simple tabular Q-learning algorithm [Sutton and
Barto, 1999], since we wish to focus our attention on the reward signal problem. Q-learning
keeps a “Q-value” for each state-action pair, and proceeds using the following update rule:

Qt(s, a) = (1 − α)Qt−1(s, a) + α(r + γ min
a′

Qt(s
′, a′)) , (6)

where 0 < α < 1 is parameter that controls the learning rate, r is the reward signal used
for learning at time t given s and a, 0 < γ ≤ 1 is the discount factor, and s, a, and s′

are the current state, action, and next state of the agent, respectively. Under fairly general
conditions, in a stationary MDP, Q-learning converges to the optimal policy, expressed as

π(s) = argmaxa Q(s, a) .
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Figure 1: This shows the dynamics of our 5x5 grid world domain. The states correspond
to the grid locations, numbered 1,2,3,4,...,24,25. Actions move the agent N,S,E, or W,
except in states 6 and 16, where any action takes the agent to state 10 and 18, respectively,
shown by the curved arrows in the figure at left. The optimal policy is shown at center,
where multiple arrows at one state denotes indifference between the possibilities. A policy
learned by our filtering agent is shown at right.

4 The filtering learning agent

Like any good student, the filtering learning agent chooses to accept well-deserved praise
from its teacher and ignore over-effusive rewards. The good student does not update his be-
havior at every time step, but only upon observing relevant rewards. The question remains:
How does an agent decide upon the relevance of the rewards it sees? We have proposed a
model in which undeserved rewards over time are captured by a Markov random process b.
Using observations from previous states and actions, an agent can approach this question
from two perspectives. In the first, each time the agent visits a particular state i, it should
gain a better sense of the evolution of the random variable b between its last visit and its
current visit. It is important to note that rewards are received frequently, thus allowing fre-
quent updating of b. Secondly, given an estimate of bt upon visiting state i at time t, it has
a better idea of the value of bt+1 when it visits state i′ at time t + 1, since we assume bt

evolves slowly over time. These are the ideas captured by the causal Kalman filter, which
only uses the history of past states and observations to provides estimates of r(i) and b.

The agent follows this simple algorithm:

1. From initial state i0, take some action a, transition to state i, and receive reward
signal g0. Initialize x̂0(i0) = g0 and x̂0(|S| + 1) = b0 = 0, since b0 = 0.

2. Perform a Kalman update using equations 1-5 to compute the current vector of
estimates x̂, which includes a component that is the reward estimate r̂(i0), which
will simply equal g this time.

3. From the current state i at time t, take another action with some mix of exploration
and exploitation; transition to state j, receiving reward signal gt. If this is the first
visit to state i, initialize x̂t(i) = gt − b̂t−1.

4. Perform a Kalman update using equations 1-5 to compute the current vector of
estimates x̂, which includes a component that is the reward estimate r̂(i).

5. Update the Q-table using r̂(i) in place of r in equation 6; return to Step 3.

The advantage of the Kalman filter is that it requires a constant amount of memory – at no
time does it need a full history of states and observations. Instead, it computes a sufficient
statistic during each update, x and P , which consists of the maximum likelihood estimate
of r and b, and the covariance matrix of this estimate. Thus, we can run this algorithm
online as we learn, and its speed does not deteriorate over time. Its speed is most tied to
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Figure 2: (Left) As the agent is attempting to learn, the reward signal value (y-axis) changes
dramatically over time (x-axis) due to the noise term. While the true range of rewards in
this grid world domain only falls between 0 and 20, the noisy reward signal ranges from
-10 to 250, as shown in the graph at left. (Center) Given this noisy signal, the filtering agent
is still able to learn the true underlying rewards, converging to the correct relative values
over time, as shown in the middle graph. (Right) The filtering learning agent (bold line)
accrues higher rewards over time than the ordinary Q-learner (thin line), since it is able to
converge to an optimal policy whereas the non-filtering Q-learner remains confused.

the number of observation states that we choose to use, since the Kalman update (Eqn. 3)
needs to perform a matrix inversion of size |S| × |S|. However, since our model assumes
the agent only has access to a limited, local observation space within the true global state
space, this computation remains feasible.

5 Empirical results

If the world dynamics exactly match the linear model we provide the Kalman filter, then
this method will provably converge to the correct reward value estimates and the find the
optimal policy under conditions similar to those guaranteeing Q-learning’s eventual con-
vergence. However, we would rarely expect the world to fit this grossly simplified model.
The interesting question concerns situations in which the actual dynamics are clearly dif-
ferent from our model, and whether our filtering agent will still learn a good policy. This
section examines the efficacy of the filtering learning agent in several increasingly difficult
domains: (1) a single agent domain in which the linear system describes the world per-
fectly, (2) a single agent domain where the noise is manually adjusted without following
the model, (3) a multi-agent setting in which the noise term is meant to encapsulate pres-
ence of other agents in the environment, and (4) a more complicated multi-agent setting
that simulates an mobile ad-hoc networking domain in which mobile agent nodes try to
maximize total network performance.

For ease of exposition, all the domains we use are variants of the popular grid-world domain
shown in Figure 1 [Sutton and Barto, 1999]. The agent is able to move North, South, East,
or West, and most transitions give the agent zero reward, except all actions from state 6
move the agent directly to state 10 with a reward of 20, and all actions from state 16 move
the agent directly to state 18 with a reward of 10. Bumps into the wall cost the agent -1 in
reward and move the agent nowhere. We use a discount factor of 0.9.

To demonstrate the basic feasibility of our filtering method, we first create a domain that
follows the linear model of the world given in Section 3 perfectly. That is, in each time
step, a single agent receives its true reward plus some noise term that evolves as a Markov
random process. To achieve this, we simply add a noise term to the grid world domain
given in Figure 1. As shown in Figure 2, an agent acting in this domain will receive a large
range of reward values due to the evolving noise term. In the example given, sometimes
this value ranges as high as 250 even though the maximum reward in the grid world is
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Figure 3: (Left) Filtering agents are able to distinguish their personal rewards from the
global reward noise, and thus able to learn optimal policies and maximize their average
reward over time in a ten-agent grid-world domain. (Right) In contrast, ordinary Q-learning
agents do not process the global reward signal and can become confused as the environment
changes around them. Graphs show average rewards (y-axis) within 1000-period windows
for each of the 10 agents in a typical run of 10000 time periods (x-axis).

20 – the noise term contributes 230 to the reward signal! A standard Q-learning agent
does not stand a chance at learning anything useful using this reward signal. However, the
filtering agent can recover the true reward signal from this noisy signal and use that to learn.
Figure 2 shows that the filtering agent can learn the underlying reward signals, converging
to these values relatively quickly. The graph to the right compares the performance of the
filtering learner to the normal Q-learner, showing a clear performance advantage.

The observant reader may note that the learned rewards do not match the true rewards
specified by the grid world. Specifically, they are offset by about -4. Instead of mostly
0 rewards at each state, the agent has concluded that most states produce reward of -4.
Correspondingly, state 6 now produces a reward of about 16 instead of 20. Since Q-learning
will still learn the correct optimal policy subject to scaling or translation of the rewards, this
is not a problem. This oddity is due to the fact that our model has a degree of freedom in
the noise term b. Depending on the initial guesses of our algorithm, the estimates for the
rewards may be biased. If most of the initial guesses for the rewards underestimated the
true reward, then the learned value will be correspondingly lower than the actual true value.
In fact, all the learned values will be correspondingly lower by the same amount.

To further test our filtering technique, we next evaluate its performance in a domain that
does not conform to our noise model perfectly, but which is still a single agent system.
Instead of an external reward term that evolves according to a Gaussian noise process, we
adjust the noise manually, introducing positive and negative swings in the reward signal
values at arbitrary times. The results are similar to those in the perfectly modeled domain,
showing that the filtering method is fairly robust.

The most interesting case occurs when the domain noise is actually caused by other agents
learning in the environment. This noise will not evolve according to a Gaussian process,
but since the filtering method is fairly robust, we might still expect it to work. If there are
enough other agents in the world, then the noise they collectively generate may actually
tend towards Gaussian noise. Here we focus on smaller cases where there are 6 or 10
agents operating in the environment. We modify the grid world domain to include multiple
simultaneously-acting agents, whose actions do not interfere with each other, but whose
reward signal now consists of the sum of all the agents’ personal rewards, as given in the
basic single agent grid world of Figure 1.

We again compare the performance of the filtering learner to the ordinary Q-learning algo-
rithm. As shown in Figure 3, most of the filtering learners quickly converge to the optimal
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Figure 4: (Left) A snapshot of the 4x4 adhoc-networking domain. S denotes the sources, R
is the receiver, and the dots are the learning agents, which act as relay nodes. Lines denote
current connections. Note that nodes may overlap. (Right) Graph shows average rewards
(y-axis) in 1000-period windows as filtering (bold line) and ordinary (thin line) agents try
to learn good policies for acting as network nodes. The filtering agent is able to learn a
better policy, resulting in higher network performance (global reward). Graph shows the
average for each type of agent over 10 trial runs of 100000 time periods (x-axis) each.

policy. Three of the 10 agents converge to a suboptimal policy that produces slightly lower
average rewards. However, this artifact is largely due to our choice of exploration rate,
rather than a large error in the estimated reward values. The standard Q-learning algorithm
also produces decent results at first. Approximately half of the agents find the optimal pol-
icy, while the other half are still exploring and learning. An interesting phenomenon occurs
when these other agents finally find the optimal policy and begin receiving higher rewards.
Suddenly the performance drops drastically for the agents who had found the optimal pol-
icy first. Though seemingly strange, this provides a perfect example of the behavior that
motivates this paper. When the other agents learn an optimal policy, they begin affecting
the global reward, contributing some positive amount rather than a consistent zero. This
changes the world dynamics for the agents who had already learned the optimal policy and
causes them to “unlearn” their good behavior.

The unstable dynamics of the Q-learners could be solved if the agents had full observability,
and we could learn using the joint actions of all the agents, as in the work of Claus and
Boutilier [1998]. However, since our premise is that agents have only a limited view of
the world, the Q-learning agents will only exhibit convergence to the optimal policy if they
converge to the optimal policy simultaneously. This may take a prohibitively long time,
especially as the number of agents grows.

Finally, we apply our filtering method to a more realistic domain. Mobilized ad-hoc net-
working provides an interesting real-world environment that illustrates the importance of
reward filtering due to its high degree of partial observability and a reward signal that de-
pends on the global state. In this domain, there are a number of mobile nodes whose task
is to move in such a way as to optimize the connectivity (performance) of the network.
Chang et al. [2003] cast this as a reinforcement learning problem. As the nodes move
around, connections form between nodes that are within range of one another. These con-
nections allow packets to be transmitted between various sources and receivers scattered
among the nodes. The nodes are limited to having only local knowledge of their immediate
neighboring grid locations (rather than the numbered state locations as in the original grid
world), and thus do not know their absolute location on the grid. They are trained using
a global reward signal that is a measure of total network performance, and their actions
are limited functions that map their local state to N, S, E, W movements. We also limit
their transmission range to a distance of one grid block. For simplicity, the single receiver



is stationary and always occupies the grid location (1,1). Source nodes move around ran-
domly, and in our example here, there are two sources and eight mobile agent nodes in a
4x4 grid. This setup is shown in Figure 4, and the graph shows a comparison of an ordinary
Q-learner and the filtering learner, plotting the increase in global rewards over time as the
agents learn to perform their task as intermediate network nodes. The graph plots average
performance over 10 runs, showing the benefit of the filtering process.

6 Limitations and extensions

The Kalman filtering framework seems to work well in these example domains. However,
there are some cases where we may need to apply more sophisticated techniques. In all the
above work, we have assumed that the reward signal is deterministic – each state, action
pair only produces a single reward value. There are some domains in which we’d like to
model the reward as being stochastic, such as the multi-armed bandit problem. When the
stochasticity of the rewards approximates Gaussian noise, we can use the Kalman frame-
work directly. In equation 1, v was set to exhibit zero mean and zero variance. However,
allowing some variance would give the model an observation noise term that could reflect
the stochasticity of the reward signal.

Finally, in most cases the Kalman filtering method provides a very good estimate of r over
time. However, since we cannot guarantee an exact estimate of the reward values when the
model is not an exact representation of the world, the agent may make the wrong policy
decision sometimes. However, even if the policy is sub-optimal, the error in our derived
value function is at least bounded by ε

1−γ
, as long as the |r(i) − r̂(i)| < ε ∀i, and γ is

again the discount rate. In the majority of cases, the estimates are good enough to lead the
agent to learning a good policy.

Conclusion and future work. This paper provides the general framework for a new ap-
proach to solving large multi-agent problems using a simple model that allows for efficient
and robust learning using well-studied tools such as Kalman filtering. As a practical appli-
cation, we are working on applying these methods to a more realistic version of the mobile
ad-hoc networking domain.
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