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Abstract 

Computational mysteries surround the kernels relating the 
magnitude and sign of changes in efficacy as a function of 
the time difference between pre- and post-synaptic activity at 
a synapse. One important idea34 is that kernels result from fil­
tering, ie an attempt by synapses to eliminate noise corrupting 
learning. This idea has hitherto been applied to trace learning 
rules; we apply it to experimentally-defined kernels, using it to 
reverse-engineer assumed signal statistics. We also extend it to 
consider the additional goal for filtering of weighting learning 
according to statistical surprise, as in the Z-score transform. 
This provides a fresh view of observed kernels and can lead to 
different, and more natural, signal statistics. 

1 Introduction 

Speculation and data that the rules governing synaptic plasticity should in­
clude a very special role for timel,7,13,17,20,21,23,24,26,27,31,32,3S was spectac-
ularly confirmed by a set of highly influential experiments4·S,ll,l6,25 show­
ing that the precise relative timing of pre-synaptic and post-synaptic ac­
tion potentials governs the magnitude and sign of the resulting plasticity. 
These experimentally-determined rules (usually called spike-time dependent 
plasticity or STDP rules), which are constantly being refined,18,3o have in­
spired substantial further theoretical work on their modeling and interpreta­
tion.2·9,l0,22·28·29·33 Figure l(Dl-Gl)* depict some of the main STDP findings/ 
of which the best-investigated are shown in figure l(Dl;El), and are variants of 
a 'standard' STDP rule. Earlier work considered rate-based rather than spike­
based temporal rules, and so we adopt the broader term 'time dependent plas­
ticity' or TDP. Note the strong temporal asymmetry in both the standard rules. 

Although the theoretical studies have provided us with excellent tools for mod­
eling the detailed consequences of different time-dependent rules, and under­
standing characteristics such as long-run stability and the relationship with 
non-temporal learning rules such as BCM,6 specifically computational ideas 
about TDP are rather thinner on the ground. Two main qualitative notions 
explored in various of the works cited above are that the temporal asymme­
tries in TDP rules are associated with causality or prediction. However, look­
ing specifically at the standard STDP rules, models interested in prediction 

*We refer to graphs in this figure by row and column. 



concentrate mostly on the L 1P component and have difficulty explaining the 
predsely-timed nature of the LTD. Why should it be particularly detrimental to 
the weight of a synapse that the pre-synaptic action potential comes just after 
a post-synaptic action-potential, rather than 200ms later, for instance?. In the 
case of time-difference or temporal difference rules,29•32 why might the LTD 
component be so different from the mirror reflection of the L1P component 
(figure 1(£1)), at least short of being tied to some particular biophysical char­
acteristic of the post-synaptic cell. We seek alternative computationally-sound 
interpretations. 

Wallis & Baddeley34 formalized the intuition underlying one class of TDP rules 
(the so-called trace based rules, figure l(A1)) in terms of temporal filtering. In 
their model, the actual output is a noisy version of a 'true' underlying signal. 
They suggested, and showed in an example, that learning proceeds more profi­
ciently if the output is filtered by an optimal noise-removal filter (in their case, 
a Wiener filter) before entering into the learning rule. This is like using a prior 
over the signal, and performing learning based on the (mean) of the posterior 
over the signal given the observations (ie the output). If objects in the world 
normally persist for substantial periods, then, under some reasonable assump­
tions about noise, it turns out to be appropriate to apply a low-pass filter to 
the output. One version of this leads to a trace-like learning rule. 

Of course, as seen in column 1 of figure 1, TDP rules are generally not trace­
like. Here, we extend the Wallis-Baddeley (WB) treatment to rate-based versions 
of the actual rules shown in the figure. We consider two possibilities, which in­
fer optimal signal models from the rules, based on two different assumptions 
about their computational role. One continues to regard them as Wiener filters. 
The other, which is closely related to recent work on adaptation and modula­
tion, 3• s, 15• 36 has the kernel normalize frequency components according to their 
standard deviations, as well as removing noise. Under this interpretation, the 
learning signal is a Z-score-transformed veFsion of the output. 

In section 2, we describe the WB model. In section 3, we extend this model to 
the case of the observed rules for synaptic plasticity. 

2 Filtering 

Consider a set of pre-synaptic inputs i E { 1 ... n} with firing rates Xi ( t) at time 
t to a neuron with output rate y ( t). A general TDP plasticity rule suggests that 
synaptic weight Wi should change according to the correlation between input 
Xi(t) and output y(t), through the medium of a temporal filter cf>(s) 

~wi ex: J dtxi(t) {J dt'y(t')cf>(t-t')} = J dt'y(t'){J dtxi(t)cp(t-t')} (1) 

Provided the temporal filters for each synapse on a single post-synaptic cell 
are the same, equation 1 indicates that pre-synaptic and post-synaptic filtering 
have essentially the same effect. 

WB34 consider the case that the output can be decomposed as y(t) = s(t) + 
n(t), where s(t) is a 'true' underlying signal and n(t) is noise corrupting the 
signal. They suggest defining the filter so that s(t) = f dt' y(t')cf>(t-t') is the 
optimal least-squares estimate of the signal. Thus, learning would be based on 
the best available information about the signal s ( t). If signal and noise are sta­
tistically stationary signals, with power spectra IS ( w) 12 and IN ( w) 12 respec­
tively at (temporal) frequency w, then the magnitude of the Fourier transform 
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Figure 1: Time-dependent plastidty rules. The rows are for various suggested rules 
(A;17 B;23 D;25 E;16 F;2 G, 14 from Abbott & Nelson2); the columns show: (1) the kernels in 
time t; (2) their temporal power spectra as a function of frequency w; (3) signal power 
S ( w) as function of w assuming the kernels are derived from the underlying Wiener 
filter; (4) signal power S(w) assuming the kernels are derived from the noise-removal 
and whitening filter. Different kernels also have different phase spectra. See text for 
more details. The ordinates of the plots have been individually normalized; but the 
abscissce for all the temporal (t) plots and, separately, all the the spectral (w) plots, 
are the same, for the purposes of comparison. Numerical scales are omitted to focus 
on structural characteristics. In the text, we refer to individual graphs in this figure by 
their row letter (A-G) and column number (1-4). 



of the (Wiener) filter is 

IS(w)l 2 

I<P(w)l = IS(w)l 2 + IN(w)l 2 
(2) 

Any filter with this spectral tuning will eliminate noise as best as possible; 
the remaining freedom lies in choosing the phases of the various frequency 
components. Following Foldiak,l? WB suggest using a causal filter for y(t), 
with cp(t-t') = 0 fort< t'. This means that the input Xi(t) at timet is 
correlated with weighted values of y(t') for times t'::;;; t only. In fact, WB derive 
the optimal acausal filter and take its casual half, which is not necessarily the 
same thing. Interestingly, the forms of TDP that have commonly been used 
in reinforcement learning23•31•32 consider purely acausal filters for y(t) (such 
that Xi(t) is correlated with future values of the output), and therefore use 
exactly the opposite condition on the filter, namely that cp(t-t') = 0 fort> t'. 

In the context of input coming from visually presented objects, WB suggest us­
ing white noise N ( w) = N, 'if w, and consider two possibilities for S ( w), based 
on the assumptions that objects persist for either fixed, or randomly variable, 
lengths of time. We summarize their main result in the first three rows of 
figure 1. Figure l(A3) shows the assumed, scale-free, magnitude spectrum 
IS(w)l = 1/w for the signal. Figure l(Al) shows the (truly optimal) purely 
causal version of the filter that results - it can be shown to involve exactly 
an exponential decay, with a rate constant which depends on the level of the 
noise N. In WB's self-supervised setting, it is rather unclear a priori whether 
the assumption of white noise is valid; WB's experiments bore it out to a rough 
approximation, and showed that the filter of figure l(Al) worked well on a task 
involving digit representation and recognition. 

Figure l(Bl;B3) repeat the analysis, with the same signal spectrum, but for 
the optimal purely acausal filter as used in reinforcement learning's synaptic 
eligibility traces. Of course, the true TDP kernels (shown in figure l(Dl-Gl)) 
are neither purely casual nor acausal; figure l(Cl) shows the normal low pass 
filter that results from assuming phase 0 for all frequency components. 

Although the WB filter of figure l(Cl) somewhat resembles a Hebbian version 
of the anti-Hebbian rule for layer IV spiny stellate cells shown in figure l(Gl), 
it is clearly not a good match for the standard forms of TDP. One might also 
question the relationship between the time constants of the kernels and the 
signal spectrum that comes from object persistence. The next section consid­
ers two alternative possibilities for interpreting TDP kernels. 

3 Signalling and Whitening 

The main intent of this paper is to combine WB's idea about the role of filtering 
in synaptic plasticity with the actual forms of the kernels that have been re­
vealed in the experiments. Under two different models for the computational 
goal of filtering, we work back from the experimental kernels to the implied 
forms of the statistics of the signals. The first method employs WB's Wiener 
filtering idea. The second method can be seen as using a more stringent defin­
tion of statistical significance. 
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Figure 2: Kernel manipulation. A) The phase spectrum (ie kernel phase as a function 
of frequency) for the kernel (shown in figure l(El)) with asymmetric LTP and LTD.l6 

B) The kernel that results from the power spectrum of figure l(E2) but constant phase 
-rr/2. This kernel has symmetric LTP and LTD, with an intermediate time constant. 
C) Plasticity kernel that is exactly a difference of two Gaussians (DoG; compare fig­
ure l(Fl)). White (solid; from equation 4) and Wiener (dashed; from equation 3) signal 
spectra derived from the DoG kernel in (C). Here, the signal spectrum in the case of 
whitening has been vertically displaced so it is clearer. Both signal spectra show dear 
periodicities. 

3.1 Reverse engineering signals from Wiener filtering 

Accepting equation 2 as the form of the filter (note that this implies that 
lci>(w)l ~ 1), and, with WB, making the assumption that the noise is white, 
so IN(w)l = N, Vw, the assumed amplitude spectrum of the signal process 
s(t) is 

IS(w)l = N~lci>(w)l/(1-lci>(i.o)i). (3) 

Importantly, the assumed power of the noise does not affect the form of the 
signal power, it only scales it. 

Figure 1(D2-G2) shows the magnitude of the Fourier transform of the experi­
mental kernels (which are shown in figure 1(D1-G 1)), and figure 1(D3-G3) show 
the implied signal spectra. Since there is no natural data that specify the abso­
lute scale of the kernels (ie the maximum value of lci>(w) 1), we set it arbitrarily 
to 0.5. Any value less than ~ 0.9 leads to similar predictions for the signal 
spectra. We can relate figure 1(D3-G3) to to the heuristic criteria mentioned 
above for the signal power spectrum. In two cases (D3;F3), the clear peaks 
in the signal power spectra imply strong periodicities. For layer V pyramids 
(D3), the time constant for the kernel is ~ 20ms, implying a peak frequency of 
w =50Hz in they band. In the hippocampal case, the frequency may be a lit­
tle lower. Certainly, the signal power spectra underlying the different kernels 
have quite different forms. 

3.2 Reverse engineering signals from whitening 

WB's suggestion that the underlying signal s(t) should be extracted from the 
output y ( t) far from exhausts the possibilities for filtering. In particular, there 
have been various suggestions36 that learning should be licensed by statistical 
surprise, ie according to how components of the output differ from expecta­
tions. A simple form of this that has gained recent currency is the Z-score 
transformation,8•15•36 which implies considering components of the signal in 
units of (ie normalized by) their standard deviations. Mechanistically, this is 
closely related to whitening in the face of input noise, but with a rather differ­
ent computational rationale. 



A simple formulation of a noise-sensitive Z-score is Dong & Atick's12 whitening 
filter. Under the same formulation as WB (equation 2), this suggests multiply­
ing the Wiener filter by 1 I IS ( w) I, giving 

I<I>(w)l = IS(w)II(IS(w)l 2 + N(w) 2). (4) 

As in equation 3, it is possible to solve for the signal power spectra implied 
by the various kernels. The 4th column of figure 1 shows the result of doing 
this for the experimental kernels. In particular, it shows that the clear spectral 
peaks suggested by the Wiener filter (in the 3rd column) may be artefactual -
they can arise from a form of whitening. Unlike the case of Wiener filtering, the 
signal statistics derived from the assumption of whitening have the common 
characteristic of monotonically decreasing signal powers as a function of fre­
quency w, which is a common finding for natural scene statistics, for instance. 

The case of the layer V pyramids25 (row Din figure 1) is particularly clear. If 
the time constants of potentiation (LTP) and depression (LTD) are T, and LTP 
and LTD are matched, then the Fourier transform of the plasticity kernel is 

( 1 ( 1 1 ) -~ w . 2~ tJ ( ) <I> W) = - + = -t - = -tT - 5 
VEi iw + 1. iw - 1. rr w2 + ~ rr ~ + T2 

T T T W 

which is exactly the form of equation 4 for S ( w) = 1 I w (which is duly shown 
in figure 1(D4)). Note the factor of -i in <I>(w). This is determined by the 
phases of the frequency components, and comes from the anti-symmetry of 
the kernel. The phase of the components (L<I>(w) = -rr 12, by one convention) 
implies the predictive nature of the kernel: Xi(t) is being correlated with led 
(ie future) values of noise-filtered, significance-normalized, outputs. 

The other cases in figure 1 follow in a similar vein. Row E, from cortical layer 
II/ll, with its asymmetry between LTP and LID, has similar signal statistics, 
but with an extra falloff constant w0, making S(w) = 11(w + w 0 ). Also, it 
has a phase spectrum L<I>(w) which is not constant with w (see figure 2A). 
Row F, from hippocampal GABAergic cells in culture, has a form that can arise 
from an exponentially decreasing signal power and little assumed noise (small 
N ( w) ). Conversely, row G, in cortical layer IV spiny-stellate cells, arises from 
the same signal statistics, but with a large noise term N(w). Unlike the case 
of the Wiener filter (equation 3), the form of the signal statistics, and not just 
their magnitude, depends on the amount of assumed noise. 

Figure 2B-C show various aspects of how these results change with the param­
eters or forms of the kernels. Figure 2B shows that coupling the power spec­
trum (of figure 1E2) for the rule with asymmetric LTP and LTD with a constant 
phase spectrum (-rr 12) leads to a rule with the same filtering characteristic, 
but with symmetric LTP and LTD. The phase spectrum concerns the predictive 
relationship between pre- and post-synaptic frequency components; it will be 
interesting to consider the kernels that result from other temporal relation­
ships between pre- and post-synaptic activities. Figure 2C shows the kernel 
generated as a difference of two Gaussians (DoG). Although this kernel resem­
bles that of figure 1F1, the signal spectra (figure 2D) calculated on the basis of 
whitening (solid; vertically displaced) or Wiener filtering (dashed) are similar 
to each other, and both involve strong periodicity near the spectral peak of the 
kernel. 



4 Discussion 

Temporal asymmetries in synaptic plasticity have been irresistibly alluring to 
theoretical treatments. We followed the suggestion that the kernels indicate 
that learning is not based on simple correlation between pre- and post -synaptic 
activity, but rather involves filtering in the light of prior information, either to 
remove noise from the signals (Wiener filtering), or to remove noise and boost 
components of the signals according to their statistical significance. 

Adopting this view leads to new conclusions about the kernels, for instance re­
vealing how the phase spectrum differentiates rules with symmetric and asym­
metric potentiation and depression components (compare figures l(El); 2B). 
Making some further assumptions about the characteristics of the assumed 
noise, it permits us to reverse engineer the assumed statistics of the signals, ie 
to give a window onto the priors at synapses or cells (columns 3;4 of figure 1). 
Structural features in these signal statistics, such as strong periodicities, may 
be related to experimentally observable characteristics such as oscillatory ac­
tivity in relevant brain regions. Most importantly, on this view, the detailed 
characteristics of the filtering might be expected to adapt in the light of pat­
terns of activity. This suggests the straightforward experimental test of ma­
nipulating the input and/or output statistics and recording the consequences. 

Various characteristics of the rules bear comment. Since we wanted to focus on 
structural features of the rules, the graphs in the figures all lack precise time 
or frequency scales. In some cases we know the time constants of the kernels, 
and they are usually quite fast (on the order of tens of milliseconds). This can 
suggest high frequency spectral peaks in assumed signal statistics. However, it 
·also hints at the potential inadequacy of our rate-based treatment that we have 
given, and suggests the importance of a spike-based treatment. 22• 30 Recent 
evidence that successive pairs of pre- and post-synaptic spikes do not interact 
additively in determining the magnitude and direction of plasticity18 make the 
averaging inherent in the rate-based approximation less appealing. Further, 
we commented at the outset that pre- and post-synaptic filtering have similar 
effects, provided that all the filters on one post-synaptic cell are the same. If 
they are different, then synapses might well be treated as individual filters, 
ascertaining important signals for learning. In our framework, it is interesting 
to speculate about the role of (pre-)synaptic depression itself as a form of noise 
filter (since noise should be filt€red before it can affect the activity of the post­
synaptic cell, rather than just its plasticity); leaving the kernel as a significance 
filter, as in the whitening treatment. Finally, largely because of the separate 
roles of signal and noise, we have been unable to think of a simple experiment 
that would test between Wiener and whitening filtering. However, it is a quite 
critical issue in further exploring computational accounts of plasticity. 
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