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Abstract

Many classification algorithms, including the support vector machine,
boosting and logistic regression, can be viewed as minimum contrast
methods that minimize a convex surrogate of the 0-1 loss function. We
characterize the statistical consequences of using such a surrogate by pro-
viding a general quantitative relationship between the risk as assessed us-
ing the 0-1 loss and the risk as assessed using any nonnegative surrogate
loss function. We show that this relationship gives nontrivial bounds un-
der the weakest possible condition on the loss function—that it satisfy a
pointwise form of Fisher consistency for classification. The relationship
is based on a variational transformation of the loss function that is easy
to compute in many applications. We also present a refined version of
this result in the case of low noise. Finally, we present applications of
our results to the estimation of convergence rates in the general setting of
function classes that are scaled hulls of a finite-dimensional base class.

1 Introduction

Convexity has played an increasingly important role in machine learning in recent years,
echoing its growing prominence throughout applied mathematics (Boyd and Vandenberghe,
2003). In particular, a wide variety of two-class classification methods choose a real-valued
classifier f based on the minimization of a convex surrogate φ(yf(x)) in the place of an
intractable loss function 1(sign(f(x)) 6= y). Examples of this tactic include the support
vector machine, AdaBoost, and logistic regression, which are based on the exponential
loss, the hinge loss and the logistic loss, respectively.

What are the statistical consequences of choosing models and estimation procedures so as
to exploit the computational advantages of convexity? In the setting of 0-1 loss, some basic
answers have begun to emerge. In particular, it is possible to demonstrate the Bayes-risk
consistency of methods based on minimizing convex surrogates for 0-1 loss, with appropri-
ate regularization. Lugosi and Vayatis (2003) have provided such a result for any differen-
tiable, monotone, strictly convex loss function φ that satisfies φ(0) = 1. This handles many
common cases although it does not handle the SVM. Steinwart (2002) has demonstrated
consistency for the SVM as well, where F is a reproducing kernel Hilbert space and φ is
continuous. Other results on Bayes-risk consistency have been presented by Jiang (2003),
Zhang (2003), and Mannor et al. (2002).



To carry this agenda further, it is necessary to find general quantitative relationships be-
tween the approximation and estimation errors associated with φ, and those associated with
0-1 loss. This point has been emphasized by Zhang (2003), who has presented several ex-
amples of such relationships. We simplify and extend Zhang’s results, developing a general
methodology for finding quantitative relationships between the risk associated with φ and
the risk associated with 0-1 loss. In particular, letR(f) denote the risk based on 0-1 loss and
let R∗ = inff R(f) denote the Bayes risk. Similarly, let us refer to Rφ(f) = Eφ(Y f(X))
as the “φ-risk,” and let R∗

φ = inff Rφ(f) denote the “optimal φ-risk.” We show that, for
all measurable f ,

ψ(R(f) −R∗) ≤ Rφ(f) −R∗
φ, (1)

for a nondecreasing function ψ : [0, 1] → [0,∞), and that no better bound is possible.
Moreover, we present a general variational representation of ψ in terms of φ, and show
how this representation allows us to infer various properties of ψ.

This result suggests that if ψ is well-behaved then minimization of Rφ(f) may provide a
reasonable surrogate for minimization ofR(f). Moreover, the result provides a quantitative
way to transfer assessments of statistical error in terms of “excess φ-risk”Rφ(f)−R∗

φ into
assessments of error in terms of “excess risk” R(f) −R∗.

Although our principal goal is to understand the implications of convexity in classification,
we do not impose a convexity assumption on φ at the outset. Indeed, while conditions
such as convexity, continuity, and differentiability of φ are easy to verify and have natural
relationships to optimization procedures, it is not immediately obvious how to relate such
conditions to their statistical consequences. Thus, in Section 2 we consider the weakest
possible condition on φ—that it is “classification-calibrated,” which is essentially a point-
wise form of Fisher consistency for classification. We show that minimizing φ-risk leads
to minimal risk precisely when φ is classification-calibrated.

Building on (1), in Section 3 we study the low noise setting, in which the posterior prob-
ability η(X) is not too close to 1/2. We show that in this setting we are able to obtain an
improvement in the relationship between excess φ-risk and excess risk.

Section 4 turns to the estimation of convergence rates for empirical φ-risk minimization
in the low noise setting. We find that for convex φ satisfying a certain uniform convexity
condition, empirical φ-risk minimization yields convergence of misclassification risk to
that of the best-performing classifier in F , and the rate of convergence can be strictly faster
than the classical parametric rate of n−1/2.

2 Relating excess risk to excess φ-risk

There are three sources of error to be considered in a statistical analysis of classification
problems: the classical estimation error due to finite sample size, the classical approxima-
tion error due to the size of the function space F , and an additional source of approximation
error due to the use of a surrogate in place of the 0-1 loss function. It is this last source of
error that is our focus in this section. We give estimates for this error that are valid for any
measurable function. Since the error is defined in terms of the probability distribution, we
work with population expectations in this section.

Fix an input space X and let (X,Y ), (X1, Y1), . . . , (Xn, Yn) ∈ X × {±1} be i.i.d., with
distribution P . Define η : X → [0, 1] as η(x) = P (Y = 1|X = x).

Define the {0, 1}-risk, or just risk, of f as R(f) = P (sign(f(X)) 6= Y ), where sign(α) =
1 for α > 0 and −1 otherwise. Based on the sample Dn = ((X1, Y1), . . . , (Xn, Yn)), we
want to choose a function fn with small risk. Define the Bayes riskR∗ = inff R(f), where
the infimum is over all measurable f . Then any f satisfying sign(f(X)) = sign(η(X) −
1/2) a.s. on {η(X) 6= 1/2} has R(f) = R∗.



Fix a function φ :
� → [0,∞). Define the φ-risk of f as Rφ(f) = Eφ(Y f(X)). We can

view φ as specifying a contrast function that is minimized in determining a discriminant f .
Define Cη(α) = ηφ(α) + (1 − η)φ(−α), so that the conditional φ-risk at x ∈ X is

E(φ(Y f(X))|X = x) = Cη(x)(f(x)) = η(x)φ(f(x)) + (1 − η(x))φ(−f(x)).

As a useful illustration for the definitions that follow, consider a singleton domain X =
{x0}. Minimizing φ-risk corresponds to choosing f(x0) to minimize Cη(x0)(f(x0)).

For η ∈ [0, 1], define the optimal conditional φ-risk

H(η) = inf
α∈ �

Cη(α) = inf
α∈ �

(ηφ(α) + (1 − η)φ(−α)).

Then the optimal φ-risk satisfies R∗
φ := inff Rφ(f) = EH(η(X)), where the infimum is

over measurable functions. For η ∈ [0, 1], define

H−(η) = inf
α:α(2η−1)≤0

Cη(α) = inf
α:α(2η−1)≤0

(ηφ(α) + (1 − η)φ(−α)).

This is the optimal value of the conditional φ-risk, under the constraint that the sign of the
argument α disagrees with that of 2η − 1.

We now turn to the basic condition we impose on φ. This condition generalizes the re-
quirement that the minimizer of Cη(α) (if it exists) has the correct sign. This is a minimal
condition that can be viewed as a form of Fisher consistency for classification (Lin, 2001).

Definition 1. We say that φ is classification-calibrated if, for any η 6= 1/2,

H−(η) > H(η).

The following functional transform of the loss function will be useful in our main result.

Definition 2. We define the ψ-transform of a loss function as follows. Given φ :
� →

[0,∞), define the function ψ : [0, 1] → [0,∞) by ψ = ψ̃∗∗, where

ψ̃(θ) = H−

(

1 + θ

2

)

−H

(

1 + θ

2

)

,

and g∗∗ : [0, 1] → �
is the Fenchel-Legendre biconjugate of g : [0, 1] → �

. Equivalently,
the epigraph of g∗∗ is the closure of the convex hull of the epigraph of g. (Recall that the
epigraph of a function g is the set {(x, t) : x ∈ [0, 1], g(x) ≤ t}.)

It is immediate from the definitions that ψ̃ and ψ are nonnegative and that they are also con-
tinuous on [0, 1]. We calculate the ψ-transform for exponential loss, logistic loss, quadratic
loss and truncated quadratic loss, tabulating the results in Table 1. All of these loss func-
tions can be verified to be classification-calibrated. (The other parameters listed in the table
will be referred to later.)

The importance of the ψ-transform is shown by the following theorem.

φ(α) ψ(θ) LB δ(ε)

exponential e−α 1 −
√

1 − θ2 eB e−Bε2/8

logistic ln(1 + e−2α) θ 2 e−2Bε2/4

quadratic (1 − α)2 θ2 2(B + 1) ε2/4

truncated quadratic (max{0, 1 − α})2 θ2 2(B + 1) ε2/4

Table 1: Four convex loss functions and the corresponding ψ-transform. On the interval
[−B,B], each loss function has the indicated Lipschitz constant LB and modulus of con-
vexity δ(ε) with respect to dφ. All have a quadratic modulus of convexity.



Theorem 3. 1. For any nonnegative loss function φ, any measurable f : X → �

and any probability distribution on X × {±1},

ψ(R(f) −R∗) ≤ Rφ(f) −R∗
φ.

2. Suppose |X | ≥ 2. For any nonnegative loss function φ, any ε > 0 and any θ ∈
[0, 1], there is a probability distribution on X × {±1} and a function f : X → �

such that R(f) −R∗ = θ and ψ(θ) ≤ Rφ(f) −R∗
φ ≤ ψ(θ) + ε.

3. The following conditions are equivalent.
(a) φ is classification-calibrated.
(b) For any sequence (θi) in [0, 1], ψ(θi) → 0 if and only if θi → 0.
(c) For every sequence of measurable functions fi : X → �

and every proba-
bility distribution on X × {±1}, Rφ(fi) → R∗

φ implies R(fi) → R∗.

Remark: It can be shown that classification-calibration implies ψ is invertible on [0, 1], in
which case it is meaningful to write the upper bound on excess risk as ψ−1(Rφ(f) −R∗

φ).

Remark: Zhang (2003) has given a comparison theorem like Part 1, for convex φ that
satisfy certain conditions. Lugosi and Vayatis (2003) and Steinwart (2002) have shown
limiting results like Part 3c under other conditions on φ. All of these conditions are stronger
than the ones we assume here.

The following lemma summarizes various useful properties of H , H− and ψ.

Lemma 4. The functions H , H− and ψ have the following properties, for all η ∈ [0, 1]:

1. H and H− are symmetric about 1/2: H(η) = H(1 − η), H−(η) = H−(1 − η).

2. H is concave and satisfies H(η) ≤ H(1/2) = H−(1/2).

3. If φ is classification-calibrated, then H(η) < H(1/2) for η 6= 1/2.

4. H− is concave on [0, 1/2] and [1/2, 1], and satisfies H−(η) ≥ H(η).

5. H , H− and ψ̃ are continuous on [0, 1].

6. ψ is continuous on [0, 1], ψ is nonnegative and minimal at 0, and ψ(0) = 0.

7. φ is classification-calibrated iff ψ(θ) > 0 for all θ ∈ (0, 1].

Proof. (Of Theorem 3). For Part 1, it is straightforward to show that

R(f) −R∗ = E (1 [sign(f(X)) 6= sign(η(X) − 1/2)] |2η(X) − 1|) ,
where 1 [Φ] is 1 if the predicate Φ is true and 0 otherwise. From the definition, ψ is convex,
so we can apply Jensen’s inequality, the fact that ψ(0) = 0 (Lemma 4, part 6) and the fact
that ψ(θ) ≤ ψ̃(θ), to show that

ψ(R(f) −R∗)

≤ Eψ (1 [sign(f(X)) 6= sign(η(X) − 1/2)] |2η(X) − 1|)
= E (1 [sign(f(X)) 6= sign(η(X) − 1/2)]ψ (|2η(X) − 1|))

≤ E

(

1 [sign(f(X)) 6= sign(η(X) − 1/2)] ψ̃ (|2η(X) − 1|)
)

= E
(

1 [sign(f(X)) 6= sign(η(X) − 1/2)]
(

H−(η(X)) −H(η(X))
))

= E

(

1 [sign(f(X)) 6= sign(η(X) − 1/2)]

(

inf
α:α(2η(X)−1)≤0

Cη(X)(α) −H(η(X))

))

≤ E
(

Cη(X)(f(X)) −H(η(X))
)

= Rφ(f) −R∗
φ,



where the last inequality used the fact that for any x, and in particular when sign(f(x)) =
sign(η(x) − 1/2), we have Cη(x)(f(x)) ≥ H(η(x)).

For Part 2, the first inequality is from Part 1. For the second, fix ε > 0 and θ ∈ [0, 1]. From
the definition of ψ, we can choose γ, α1, α2 ∈ [0, 1] for which θ = γα1 + (1 − γ)α2 and
ψ(θ) ≥ γψ̃(α1) + (1 − γ)ψ̃(α2) − ε/2. Choose distinct x1, x2 ∈ X , and choose PX such
that PX{x1} = γ, PX{x2} = 1 − γ, η(x1) = (1 + α1)/2, and η(x2) = (1 + α2)/2.
From the definition of H−, we can choose f : X → �

such that f(x1) ≤ 0, f(x2) ≤ 0,
Cη(x1)(f(x1)) ≤ H−(η(x1)) + ε/2 and Cη(x2)(f(x2)) ≤ H−(η(x2)) + ε/2. Then it is
easy to verify thatRφ(f)−R∗

φ ≤ γψ̃(α1)+(1−γ)ψ̃(α2)+ε/2 ≤ ψ(θ)+ε. Furthermore,
since sign(f(xi)) = −1 but η(xi) ≥ 1/2, we have R(f) −R∗ = E|2η(X) − 1| = θ.

For Part 3, first note that, for any φ, ψ is continuous on [0, 1] and ψ(0) = 0 by Lemma 4,
part 6, and hence θi → 0 implies ψ(θi) → 0. Thus, we can replace condition (3b) by

(3b’) For any sequence (θi) in [0, 1], ψ(θi) → 0 implies θi → 0 .

To see that (3a) implies (3b’), let φ be classification-calibrated, and let (θi) be a se-
quence that does not converge to 0. Define c = lim sup θi > 0, and pass to a sub-
sequence with lim θi = c. Then limψ(θi) = ψ(c) by continuity, and ψ(c) > 0 by
classification-calibration (Lemma 4, part 7). Thus, for the original sequence (θi), we see
lim supψ(θi) > 0, so we cannot have ψ(θi) → 0.

Part 1 implies that (3b’) implies (3c). The proof that (3c) implies (3a) is straightforward;
see Bartlett et al. (2003).

The following observation is easy to verify. It shows that if φ is convex, the classification-
calibration condition is easy to verify and the ψ transform is a little easier to compute.
Lemma 5. Suppose φ is convex. Then we have

1. φ is classification-calibrated if and only if it is differentiable at 0 and φ′(0) < 0.
2. If φ is classification-calibrated, then ψ̃ is convex, hence ψ = ψ̃.

All of the classification procedures mentioned in earlier sections utilize surrogate loss func-
tions which are either upper bounds on 0-1 loss or can be transformed into upper bounds
via a positive scaling factor. It is easy to verify that this is necessary.
Lemma 6. If φ :

� → [0,∞) is classification-calibrated, then there is a γ > 0 such that
γφ(α) ≥ 1 [α ≤ 0] for all α ∈ �

.

3 Tighter bounds under low noise conditions

In a study of the convergence rate of empirical risk minimization, Tsybakov (2001) pro-
vided a useful condition on the behavior of the posterior probability near the optimal deci-
sion boundary {x : η(x) = 1/2}. Tsybakov’s condition is useful in our setting as well; as
we show in this section, it allows us to obtain a refinement of Theorem 3.

Recall that

R(f) −R∗ = E (1 [sign(f(X)) 6= sign(η(X) − 1/2)] |2η(X) − 1|)
≤ PX (sign(f(X)) 6= sign(η(X) − 1/2)) , (2)

with equality provided that η(X) is almost surely either 1 or 0. We say that P has noise
exponent α ≥ 0 if there is a c > 0 such that every measurable f : X → �

has

PX (sign(f(X)) 6= sign(η(X) − 1/2)) ≤ c (R(f) −R∗)
α
. (3)

Notice that we must have α ≤ 1, in view of (2). If α = 0, this imposes no constraint on the
noise: take c = 1 to see that every probability measure P satisfies (3). On the other hand,
it is easy to verify that α = 1 if and only if |2η(X) − 1| ≥ 1/c a.s. [PX ].



Theorem 7. Suppose P has noise exponent 0 < α ≤ 1, and φ is classification-calibrated.
Then there is a c > 0 such that for any f : X → �

,

c (R(f) −R∗)α ψ

(

(R(f) −R∗)
1−α

2c

)

≤ Rφ(f) −R∗
φ.

Furthermore, this never gives a worse rate than the result of Theorem 3, since

(R(f) −R∗)α ψ

(

(R(f) −R∗)
1−α

2c

)

≥ ψ

(

R(f) −R∗

2c

)

.

The proof follows closely that of Theorem 3(1), with the modification that we approximate
the error integral separately over subsets of the input space with low and high noise.

4 Estimation rates

Large margin algorithms choose f̂ from a class F to minimize empirical φ-risk,

R̂φ(f) = Êφ(Y f(X)) =
1

n

n
∑

i=1

φ(Yif(Xi)).

We have seen how the excess risk depends on the excess φ-risk. In this section, we examine
the convergence of f̂ ’s excess φ-risk, Rφ(f̂) − R∗

φ. We can split this excess risk into an
estimation error term and an approximation error term:

Rφ(f̂) −R∗
φ = (Rφ(f̂) − inf

f∈F
Rφ(f)) + ( inf

f∈F
Rφ(f) −R∗

φ).

We focus on the first term, the estimation error term. For simplicity, we assume throughout
that some f∗ ∈ F achieves the infimum, Rφ(f∗) = inff∈F Rφ(f).

The simplest way to bound Rφ(f̂) − Rφ(f∗) is to show that R̂φ(f) and Rφ(f) are close,
uniformly over F . This approach can give the wrong rate. For example, for a nontrivial
class F , the resulting estimation error bound can decrease no faster than 1/

√
n. However, if

F is a small class (for instance, a VC-class) and Rφ(f∗) = 0, then Rφ(f̂) should decrease
as logn/n. Lee et al. (1996) showed that fast rates are also possible for the quadratic
loss φ(α) = (1 − α)2 if F is convex, even if Rφ(f∗) > 0. In particular, because the
quadratic loss function is strictly convex, it is possible to bound the variance of the excess
loss (difference between the loss of a function f and that of the optimal f ∗) in terms of its
expectation. Since the variance decreases as we approach the optimal f ∗, the risk of the
empirical minimizer converges more quickly to the optimal risk than the simple uniform
convergence results would suggest. Mendelson (2002) improved this result, and extended
it from prediction in L2(PX) to prediction in Lp(PX) for other values of p. The proof
used the idea of the modulus of convexity of a norm. This idea can be used to give a
simpler proof of a more general bound when the loss function satisfies a strict convexity
condition, and we obtain risk bounds. The modulus of convexity of an arbitrary strictly
convex function (rather than a norm) is a key notion in formulating our results.

Definition 8 (Modulus of convexity). Given a pseudometric d defined on a vector space
S, and a convex function f : S → �

, the modulus of convexity of f with respect to d is the
function δ : [0,∞) → [0,∞] satisfying

δ(ε) = inf

{

f(x1) + f(x2)

2
− f

(

x1 + x2

2

)

: x1, x2 ∈ S, d(x1, x2) ≥ ε

}

.

If δ(ε) > 0 for all ε > 0, we say that f is strictly convex with respect to d.



We consider loss functions φ that also satisfy a Lipschitz condition with respect to a pseu-
dometric d on

�
: we say that φ :

� → �
is Lipschitz with respect to d, with constant L,

if for all a, b ∈ �
, |φ(a) − φ(b)| ≤ L · d(a, b). (Note that if d is a metric and φ is convex,

then φ necessarily satisfies a Lipschitz condition on any compact subset of
�

.)

We consider four loss functions that satisfy these conditions: the exponential loss function
used in AdaBoost, the deviance function for logistic regression, the quadratic loss function,
and the truncated quadratic loss function; see Table 1. We use the pseudometric

dφ(a, b) = inf {|a− α| + |β − b| : φ constant on (min{α, β},max{α, β})} .
For all except the truncated quadratic loss function, this corresponds to the standard metric
on

�
, dφ(a, b) = |a− b|. In all cases, dφ(a, b) ≤ |a− b|, but for the truncated quadratic, dφ

ignores differences to the right of 1. It is easy to calculate the Lipschitz constant and mod-
ulus of convexity for each of these loss functions. These parameters are given in Table 1.

In the following result, we consider the function class used by algorithms such as
AdaBoost: the class of linear combinations of classifiers from a fixed base class. We as-
sume that this base class has finite Vapnik-Chervonenkis dimension, and we constrain the
size of the class by restricting the `1 norm of the linear parameters. If G is the VC-class,
we write F = B absconv(G), for some constant B, where

B absconv(G) =

{

m
∑

i=1

αigi : m ∈ � , αi ∈
�
, gi ∈ G, ‖α‖1 = B

}

.

Theorem 9. Let φ :
� → �

be a convex loss function. Suppose that, on the interval
[−B,B], φ is Lipschitz with constant LB and has modulus of convexity δ(ε) = aBε

2 (both
with respect to the pseudometric d).

For any probability distribution P on X × Y that has noise exponent α = 1, there is
a constant c′ for which the following is true. For i.i.d. data (X1, Y1), . . . , (Xn, Yn), let
f̂ ∈ F be the minimizer of the empirical φ-risk, Rφ(f) = Êφ(Y f(X)). Suppose that
F = B absconv(G), where G ⊆ {±1}X has dV C(G) = d, and

ε∗ ≥ BLB max

{

(

LBaB

B

)1/(d+1)

, 1

}

n−(d+2)/(2d+2)

Then with probability at least 1 − e−x,

R(f̂) ≤ R∗ + c′
(

ε∗ +
LB(LB/aB +B)x

n
+ inf

f∈F
Rφ(f) −R∗

φ

)

.

Notice that the rate obtained here is strictly faster than the classical n−1/2 parametric rate,
even though the class is infinite dimensional and the optimal element of F can have risk
larger than the Bayes risk. The key idea in the proof is similar to ideas from Lee et al.
(1996), Mendelson (2002), but simpler. Let f ∗ be the minimizer of φ-risk in a function
class F . If the class F is convex and the loss function φ is strictly convex and Lipschitz,
then the variance of the excess loss, gf (x, y) = φ(yf(x)) − φ(yf∗(x)), decreases with
its expectation. Thus, as a function f ∈ F approaches the optimum, f ∗, the two losses
φ(Y f̂(X)) and φ(Y f∗(X)) become strongly correlated. This leads to the faster rates.
More formally, suppose that φ is L-Lipschitz and has modulus of convexity δ(ε) ≥ cεr

with r ≤ 2. Then it is straightforward to show that Eg2
f ≤ L2 (Egf/(2c))

2/r. For the
details, see Bartlett et al. (2003).

5 Conclusions

We have studied the relationship between properties of a nonnegative margin-based loss
function φ and the statistical performance of the classifier which, based on an i.i.d. training



set, minimizes empirical φ-risk over a class of functions. We first derived a universal upper
bound on the population misclassification risk of any thresholded measurable classifier in
terms of its corresponding population φ-risk. The bound is governed by the ψ-transform, a
convexified variational transform of φ. It is the tightest possible upper bound uniform over
all probability distributions and measurable functions in this setting.

Using this upper bound, we characterized the class of loss functions which guarantee that
every φ-risk consistent classifier sequence is also Bayes-risk consistent, under any popu-
lation distribution. Here φ-risk consistency denotes sequential convergence of population
φ-risks to the smallest possible φ-risk of any measurable classifier. The characteristic prop-
erty of such a φ, which we term classification-calibration, is a kind of pointwise Fisher con-
sistency for the conditional φ-risk at each x ∈ X . The necessity of classification-calibration
is apparent; the sufficiency underscores its fundamental importance in elaborating the sta-
tistical behavior of large-margin classifiers.

Under the low noise assumption of Tsybakov (2001), we sharpened our original upper
bound and studied the Bayes-risk consistency of f̂ , the minimizer of empirical φ-risk over a
convex, bounded class of functions F which is not too complex. We found that, for convex
φ satisfying a certain uniform strict convexity condition, empirical φ-risk minimization
yields convergence of misclassification risk to that of the best-performing classifier in F ,
as the sample size grows. Furthermore, the rate of convergence can be strictly faster than
the classical n−1/2, depending on the strictness of convexity of φ and the complexity of F .
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