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Abstract

Speech dereverberation is desirable with a view to achieving, for exam-
ple, robust speech recognition in the real world. However, it is still a chal-
lenging problem, especially when using a single microphone. Although
blind equalization techniques have been exploited, they cannot deal with
speech signals appropriately because their assumptions are not satisfied
by speech signals. We propose a new dereverberation principle based
on an inherent property of speech signals, namely quasi-periodicity. The
present methods learn the dereverberation filter from a lot of speech data
with no prior knowledge of the data, and can achieve high quality speech
dereverberation especially when the reverberation time is long.

1 Introduction

Although numerous studies have been undertaken on robust automatic speech recognition
(ASR) in the real world, long reverberation is still a serious problem that severely degrades
the ASR performance [1]. One simple way to overcome this problem is to dereverberate
the speech signals prior to ASR, but this is also a challenging problem, especially when
using a single microphone. For example, certain blind equalization methods, including
independent component analysis (ICA), can estimate the inverse filter of an unknown im-
pulse response convolved with target signals when the signals are statistically independent
and identically distributed sequences [2]. However, these methods cannot appropriately
deal with speech signals because speech signals have inherent properties, such as period-
icity and formant structure, making their sequences statistically dependent. This approach
inevitably destroys such essential properties of speech. Another approach that uses the
properties of speech has also been proposed [3]. The basic idea involves adaptively de-
tecting time regions in which signal-to-reverberation ratios become small, and attenuating
speech signals in those regions. However, the precise separation of the signal and reverber-
ation durations is difficult, therefore, this approach has achieved only moderate results so
far.

In this paper, we propose a new principle for estimating an inverse filter by using an es-
sential property of speech signals, namely quasi-periodicity, as a clue. In general, voiced
segments in an utterance have approximate periodicity in each local time region while the
period gradually changes. Therefore, when a long reverberation is added to a speech signal,
signals in different time regions with different periods are mixed, thus degrading the peri-
odicity of the signals in local time regions. By contrast, we show that we can estimate an
inverse filter for dereverberating a signal by enhancing the periodicity of the signal in each



local time region. The estimated filter can dereverberate both the periodic and non-periodic
parts of speech signals with no prior knowledge of the target signals, even though only the
periodic parts of the signals are used for the estimation.

2 Quasi-periodicity based dereverberation

We propose two dereverberation methods, referred to as Harmonicity based dEReverBera-
tion (HERB) methods, based on the features of quasi-periodic signals: one based on an Av-
erage Transfer Function (ATF) that transforms reverberant signals into quasi-periodic com-
ponents (ATF-HERB), and the other based on the Minimum Mean Squared Error (MMSE)
criterion that evaluates the quasi-periodicity of target signals (MMSE-HERB). First, we
briefly explain the features of quasi-periodic signals, and then describe the two methods.

2.1 Features of quasi-periodic signals

When a source signal s(n) is recorded in a reverberant room1, the obtained signal x(n) is
represented as x(n) = h(n)∗s(n), where h(n) is the impulse response of the room and “∗”
is a convolution operation. The goal of the dereverberation is to estimate a dereverberation
filter, w(n), for −N < n < N that dereverberates x(n), and to obtain the dereverberated
signal y(n) by:

y(n) = w(n) ∗ x(n) = (w(n) ∗ h(n)) ∗ s(n) = q(n) ∗ s(n). (1)

where q(n) = w(n) ∗ h(n) is referred to as a dereverberated impulse response. Here, we
assume s(n) is a quasi-periodic signal2, which has the following features:

1. In each local time region around n0 (n0 − δ < n < n0 + δ for ∀n0), s(n) is
approximately a periodic signal whose period is T (n0).

2. Outside the region (|n′ − n0| > δ), s(n′) is also a periodic signal within its
neighboring time region, but often has another period that is different from T (n0).

These features make x(n) a non-periodic signal even within local time regions when h(m)
contains non-zero values for |m| > δ. This is because more than two periodic signals,
s(n) and s(n − m), that have different periods, are added to x(n) with weights of h(0)
and h(m). Inversely, the goal of our dereverberation is to estimate w(n) that makes y(n)
a periodic signal in each local time region. Once such a filter is obtained, q(m) must have
zero values for |m| > δ, and thus, reverberant components longer than δ are eliminated
from y(n).

An important additional feature of a quasi-periodic signal is that quasi-periodic components
in a source signal can be enhanced by an adaptive harmonic filter. An adaptive harmonic
filter is a time-varying linear filter that enhances frequency components whose frequencies
correspond to multiples of the fundamental frequency (F0) of the target signal, while pre-
serving their phases and amplitudes. The filter values are adaptively modified according to
F0. For example, a filter, F (f0(n))[·], can be implemented as follows:

x̂(n) = F (f0(n))[x(n)], (2)

=
∑

n0

g2(n − n0)Re{x(n) ∗ (g1(n)
∑

k

exp(j2πkf0(n0)n/fs))}, (3)

where n0 is the center time of each frame, f0(n0) is the fundamental frequency (F0) of
the signal at the frame, k is a harmonics index, g1(n) and g2(n) are analysis window

1In this paper, time domain and frequency domain signals are represented by non-capitalized
and capitalized symbols, respectively. Arguments “(ω)” that represent the center frequencies of the
discrete Fourier transformation bins are often omitted from frequency domain signals.

2Later, this assumption is extended so that s(n) is composed of quasi-periodic components and
non-periodic components in the case of speech signals.
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Figure 1: Diagram of ATF-HERB

functions, and fs is the sampling frequency. Even when x(n) contains a long reverberation,
the reverberant components that have different frequencies from s(n) are reduced by the
harmonic filter, and thus, the quasi-periodic components can be enhanced.

2.2 ATF-HERB: average transfer function based dereverberation

Figure 1 is a diagram of ATF-HERB, which uses the average transfer function from re-
verberant signals to quasi-periodic signals. A speech signal, S(ω), can be modeled by the
sum of the quasi-periodic components, or voiced components, Sh(ω), and non-periodic
components, or unvoiced components, Sn(ω), as eq. (4). The reverberant observed signal,
X(ω), is then represented by the product of S and the transfer function, H(ω), of a room as
eq. (5). The transfer function, H , can also be divided into two functions, D(ω) and R(ω).
The former transforms S into the direct signal, DS, and the latter into the reverberation
part, RS, as shown in eq. (6). X is also represented by the sum of the direct signal of the
quasi-periodic components, DSh, and the other components as eq. (7).

S(ω) = Sh(ω) + Sn(ω), (4)
X(ω) = H(ω)S(ω), (5)

= (D(ω) + R(ω))S(ω), (6)
= DSh + (RSh + HSn). (7)

Of these components, DSh can approximately be extracted from X by harmonic filtering.
Although the frequencies of quasi-periodic components change dynamically according to
the changes in their fundamental frequency (F0), their reverberation remains unchanged at
the same frequency. Therefore, direct quasi-periodic components, DSh, can be enhanced
by extracting frequency components located at multiples of its F0. This approximated
direct signal X̂(ω) can be modeled as follows:

X̂(ω) = D(ω)Sh(ω) + (R̂(ω)Sh(ω) + N̂(ω)), (8)

where R̂(ω)Sh(ω) and N̂(ω) are part of the reverberation of Sh and part of the direct signal
and reverberation of Sn, which unexpectedly remain in X̂ after the harmonic filtering3. We
assume that all the estimation errors in X̂ are caused by R̂Sh and N̂ in eq. (8).

The goal of ATF-HERB is to estimate O(R̂(ω)) = (D(ω) + R̂(ω))/H(ω), referred to as
a “dereverberation operator.” This is because the signal DS + R̂S, which can be obtained
by multiplying O(R̂) by X , becomes in a sense a dereverberated signal.

O(R̂(ω))X(ω) = D(ω)S(ω) + R̂(ω)S(ω), (9)

3Strictly speaking, R̂ cannot be represented as a linear transformation because the reverberation
included in X̂ depends on the time pattern of X̂ . We introduce this approximation for simplicity.
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where the right side of eq. (9) is composed of a direct signal, DS, and certain parts of the
reverberation, R̂S. The rest of the reverberation included in X(= DS+RS), or (R−R̂)S,
is eliminated by the dereverberation operator.

To estimate the dereverberation operator, we use the output of the harmonic filter, X̂ . Sup-
pose a number of X values are obtained and X̂ values are calculated from individual X

values. Then, the dereverberation operator, O(R̂), can be approximated as the average of
X̂/X , or W (ω) = E(X̂/X). W (ω) is shown to be a good estimate of O(R̂) by substitut-
ing E(X̂/X) for eqs. (4), (5) and (8) as eq. (11).

W (ω) = E(X̂/X), (10)

= O(R̂(ω))E(
1

1 + Sn/Sh
) + E(

1
1 + (X − N̂)/N̂

), (11)

� O(R̂(ω))P (|Sh(ω)| > |Sn(ω)|), (12)

where P (·) is a probability function. The arguments of the two average functions in eq. (11)
have the form of a complex function, f(z) = 1/(1 + z). E(f(z)) is easily proven to equal
P (|z| < 1), using the residue theorem if it is assumed that the phase of z is uniformly
distributed, the phases of z and |z| are independent, and |z| �= 1. Based on this property, the
second term of eq. (11) approximately equals zero because N̂ is a non-periodic component
that the harmonic filter unexpectedly extracts and thus the magnitude of N̂ almost always
has a smaller value than (Y − N̂) if a sufficiently long analysis window is used. Therefore,
W (ω) can be approximated by eq. (12), that is, W (ω) has the value of the dereverberation
operator multiplied by the probability of the harmonic components of speech with a larger
magnitude than the non-periodic components.

Once the dereverberation operator is calculated from the periodic parts of speech signals
for almost all the frequency ranges, it can dereverberate both the periodic and non-periodic
parts of the signals because the inverse transfer function is independent of the source signal
characteristics. Instead, the gain of W (ω) tends to decrease with frequency when using
our method. This is because the magnitudes of the non-periodic components relative to
the periodic components tend to increase with frequency for a speech signal, and thus
the P (|Sh| > |Sn|) value becomes smaller as ω increases. To compensate for this de-
creasing gain, it may be useful to use the average attributes of speech on the probability,
P (|Sh| > |Sn|). In our experiments in section 4, however, W (ω) itself was used as the
dereverberation operator without any compensation.

2.3 MMSE-HERB: minimum mean squared error criterion based dereverberation

As discussed in section 2.1, quasi-periodic signals can be dereverberated simply by en-
hancing their quasi-periodicity. To implement this principle directly, we introduce a cost



function, referred to as the minimum mean squared error (MMSE) criterion, to evaluate the
quasi-periodicity of the signals as follows:

C(w) =
∑

n

(y(n) − F (f0(n))[y(n)])2 =
∑

n

(w(n) ∗ x(n) − F (f0(n))[w(n) ∗ x(n)])2,

(13)
where y(n) = w(n) ∗ x(n) is a target signal that should be dereverberated by controlling
w(n), and F (f0(n))[y(n)] is a signal obtained by applying a harmonic filter to y(n). When
y(n) is a quasi-periodic signal, y(n) approximately equals F (f0(n))[y(n)] because of the
feature of quasi-periodic signals, and thus, the above cost function is expected to have the
minimum value. Inversely, the filter, w(n), that minimizes C(w) is expected to enhance
the quasi-periodicity of x(n). Such filter parameters can, for example, be obtained us-
ing optimization algorithms such as a hill-climbing method using the derivatives of C(w)
calculated as follows:

∂C(w)
∂w(l)

= 2
∑

n

(y(n) − F (f0(n))[y(n)])(x(n − l) − F (f0(n))[x(n − l)]), (14)

where F (f0(n))[x(n − l)]) is a signal obtained by applying the adaptive harmonic filter to
x(n − l)4.

There are, however, several problems involved in directly using eq. (13) as the cost function.

1. As discussed in section 2.1, the values of the dereverberated impulse response,
q(n), are expected to become zero using this method where |n| > δ, however,
the values are not specifically determined where |n| < δ. This may cause unex-
pected spectral modification of the dereverberated signal. Additional constraints
are required in order to specify these values.

2. The cost function has a self-evident solution, that is, w(l) = 0 for all l values. This
solution means that the signal, y(n), is always zero instead of being dereverber-
ated, and therefore, should be excluded. Some constraints, such as

∑
l w(l)2 = 1,

may be useful for solving this problem.

3. The complexity of the computing needed to minimize the cost function based on
repetitive estimation increases as the dereverberation filter becomes longer. The
longer the reverberation becomes, the longer the dereverberation filter should be.

To overcome these problems, we simplify the cost function in this paper. The new cost
function is defined as follows:

C(W (ω)) = E((Y (ω) − X̂(ω))2) = E((W (ω)X(ω) − X̂(ω))2), (15)

where Y (ω), X(ω), and X̂(ω) are discrete Fourier transformations of y(n), x(n), and
F (f0(n))[x(n)], respectively. The new cost function evaluates the quasi-periodicity not in
the time domain but in the frequency domain, and uses a fixed quasi-periodic signal X̂(ω)
as the desired signal, instead of using the non-fixed quasi-periodic signal, F (f0(n))[y(n)].
This modification allows us to solve the above problems. The use of the fixed desired
signals specifically provides the dereverberated impulse response, q(n), with the desired
values, even in the time region, |n| < δ. In addition, the self-evident solution, w(l) = 0, can
no longer be optimal in terms of the cost function. Furthermore, the computing complexity
is greatly reduced because the solution can be given analytically as follows:

W (ω) =
E(X̂(ω)X∗(ω))
E(X(ω)X∗(ω))

. (16)

A diagram of this simplified MMSE-HERB is shown in Fig. 2.

4F (f0(n))[x(n− l)]) is not the same signal as x̂(n− l). When calculating F (f0(n))[x(n− l)],
x(n) is time-shifted with l-points while f0(n) of the adaptive harmonic filter is not time-shifted.
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Figure 3: Processing flow of dereverberation.

When we assume the model of X̂ in eq. (8), and E(ShS∗
n) = E(SnS∗

h) = E(N̂S∗
h) = 0,

it is shown that the resulting W in eq. (16) again approaches the dereverberation operator,
O(R̂), presented in section 2.2:

W (ω) = O(R̂(ω))
E(ShS∗

h)
E(ShS∗

h) + E(SnS∗
n)

+
1
H

E(N̂S∗
n)

E(ShS∗
h) + E(SnS∗

n)
, (17)

� O(R̂(ω))
E(ShS∗

h)
E(ShS∗

h) + E(SnS∗
n)

. (18)

Because N̂ represents non-periodic components that are included unexpectedly and at ran-
dom in the output of the harmonic filter, the absolute value of the second term in eq. (17)
is expected to be sufficiently small compared with that of the first term, therefore, we
disregard this term. Then, W (ω) in eq. (16) becomes the dereverberation operator mul-
tiplied by the ratio of the expected power of the quasi-periodic components in the sig-
nals to that of whole signals. As with the speech signals discussed in section 2.2, the
E(ShS∗

h)/(E(ShS∗
h) + E(SnS∗

n)) value becomes smaller as ω increases, and thus, the
gain of W (ω) tends to decrease. Therefore, the same frequency compensation scenario as
found in section 2.2 may again be useful for the MMSE based dereverberation scheme.

3 Processing flow

Based on the above two methods, we constructed a dereverberation algorithm composed of
two steps as shown in Fig. 3. Both methods are implemented in the same processing flow
except that the methods used to calculate the dereverberation operator are different. The
flow is summarized as follows:

1. In the first step, F0 is estimated from the reverberant signal, X . Then the harmonic
components included in X are estimated as X̂1 based on adaptive harmonic fil-
tering. The dereverberation operator O(R̂1) is then calculated by ATF-HERB or
MMSE-HERB for a number of reverberant speech signals. Finally, the derever-
berated signal is obtained by multiplying O(R̂1) by X .

2. The second step employs almost the same procedures as the first step except that
the speech data dereverberated by the first step are used as the input signal. The
use of this dereverberated input signal means that reverberant components, R̂2X2,
inevitably included in eq. (8) can be attenuated. Therefore, a more effective dere-
verberation can be achieved in step 2.

In our preliminary experiments, however, repeating STEP 2 did not always improve the
quality of the dereverberated signals. This is because the estimation error of the dereverber-
ation operators accumulates in the dereverberated signals when the signals are multiplied
by more than one dereverberation operator. Therefore, in our experiments, we used STEP 2
only once. A more detailed explanation of these processing steps is also presented in [4].
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Figure 4: Reverberation curves of the original impulse responses (thin line) and derever-
berated impulse responses (male: thick dashed line, female: thick solid line) for different
reverberation times (rtime).

Accurate F0 estimation is very important in terms of achieving effective dereverberation
with our methods in this processing flow. However, this is a difficult task, especially for
speech with a long reverberation using existing F0 estimators. To cope with this problem,
we designed a simple filter that attenuates a signal that continues at the same frequency, and
used it as a preprocessor for the F0 estimation [5]. In addition, the dereverberation operator,
O(R̂1), itself is a very effective preprocessor for an F0 estimator because the reverberation
of the speech can be directly reduced by the operator. This mechanism is already included
in step 2 of the dereverberation procedure, that is, F0 estimation is applied to O(R̂1)X .
Therefore, more accurate F0 can be obtained in step 2 than in step 1.

4 Experimental results

We examined the performance of the proposed dereverberation methods. Almost the same
results were obtained with the two methods, and so we only describe those obtained with
ATF-HERB. We used 5240 Japanese word utterances provided by a male and a female
speaker (MAU and FKM, 12 kHz sampling) included in the ATR database as source signals,
S(ω). We used four impulse responses measured in a reverberant room whose reverberation
times were about 0.1, 0.2, 0.5, and 1.0 sec, respectively. Reverberant signals, X(ω), were
obtained by convolving S(ω) with the impulse responses.

Figure 4 depicts the reverberation curves5 of the original impulse responses and the derever-
berated impulse responses obtained with ATF-HERB. The figure shows that the proposed
methods could effectively reduce the reverberation in the impulse responses for the female
speaker when the reverberation time (rtime) was longer than 0.1 sec. For the male speaker,
the reverberation effect in the lower time region was also effectively reduced. This means
that strong reverberant components were eliminated, and we can expect the intelligibility
of the signals to be improved [6].

Figure 5 shows spectrograms of reverberant and dereverberated speech signals when rtime
was 1.0 sec. As shown in the figure, the reverberation of the signal was effectively reduced,
and the formant structure of the signal was restored. Similar spectrogram features were
observed under other reverberation conditions, and an improvement in sound quality could
clearly be recognized by listening to the dereverberated signals [7]. We also evaluated the
quality of the dereverberated speech in terms of speaker dependent word recognition rates

5The reverberation curve shows the reduction in the energy of a room impulse response with time
[6].
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Figure 5: Spectrogram of reverberant (left) and dereverberated (right) speech of a male
speaker uttering “ba-ku-da-i”.

with an ASR system, and could achieve more than 95 % recognition rates under all the
reverberation conditions with acoustic models trained using dereverberated speech signals.
Detailed information on the ASR experiments is also provided in [4].

5 Conclusion

A new blind dereverberation principle based on the quasi-periodicity of speech signals was
proposed. We presented two types of dereverberation method, referred to as harmonic-
ity based dereverberation (HERB) method: one estimates the average filter function that
transforms reverberant signals into quasi-periodic signals (ATF-HERB) and the other min-
imizes the MMSE criterion that evaluates the quasi-periodicity of signals (MMSE-HERB).
We showed that ATF-HERB and a simplified version of MMSE-HERB are both capable
of learning the dereverberation operator that can reduce reverberant components in speech
signals. Experimental results showed that a dereverberation operator trained with 5240
Japanese word utterances could achieve very high quality speech dereverberation. Future
work will include an investigation of how such high quality speech dereverberation can be
achieved with fewer speech data.
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